基于YOLOv11的汽车碰撞、火灾及烟雾检测模型
yolov11-collision-fire-smoke-detection
项目概述
本仓库包含使用YOLOv11训练的灾害事故检测模型,旨在通过自动化监控CCTV视频流提升实时灾害响应能力。模型训练专注于三类目标检测:车辆碰撞、明火和烟雾。
🧠 模型说明
custom.pt
- 基于YOLOv11定制的专用模型
- 使用25,000张标注图像训练(覆盖碰撞/火灾/烟雾三类)
- 专为CCTV监控视频中的事故灾害检测优化
yolov11n.pt
- 基于COCO数据集预训练的YOLOv11 nano模型
- 轻量级通用目标检测模型
- 推理速度快,但非灾害场景专用
📊 数据平衡概览
碰撞检测
- 总数据量:6,251
火灾检测
- 总数据量:6,252
整体数据集
- 🚗 碰撞样本:12,500
- 🔥 火灾样本:12,500
- 🧮 总计:25,000张图像
📈 性能指标
指标 | 数值 |
---|---|
精确率 (B) | 0.6225728016728798 |
召回率 (B) | 0.592293396436181 |
mAP50 (B) | 0.587249281543145 |
mAP50-95 (B) | 0.4040384620980947 |
综合评分 | 0.4217960240991292 |
![]() |
🎥 检测演示
(此处应插入实际检测效果演示视频或动图)
注:模型性能可能受光照条件、摄像头角度及目标遮挡等因素影响,建议在实际部署前进行场景适配测试。