YOLOv11垃圾分类检测(电池_塑料袋等)-人工智能之计算机视觉之深度学习项目第100期

YOLOv11垃圾分类检测模型训练指南

一、YOLOv11简介

YOLOv11是YOLO(You Only Look Once)系列目标检测算法的最新演进版本,继承了YOLO家族实时高效的特性,同时在精度和速度上都有显著提升。对于垃圾分类检测任务,YOLOv11能够准确识别各种垃圾类型并分类到可回收物、有害垃圾、厨余垃圾和其他垃圾四大类别。
在这里插入图片描述

二、训练环境准备

类别

在这里插入图片描述

硬件要求

  • GPU:推荐NVIDIA RTX 3060及以上,显存8GB以上
  • CPU:Intel i7或AMD Ryzen 7及以上
  • 内存:16GB及以上
  • 存储空间:至少50GB可用空间

软件环境

  1. 操作系统:Ubuntu 20.04/Windows 10/11
  2. Python 3.8或以上版本
  3. CUDA 11.3及以上
  4. cuDNN 8.2及以上
  5. PyTorch 1.10或以上版本

安装依赖

pip install torch torchvision torchaudio
pip install opencv-python matplotlib tqdm pandas seaborn
pip install ultralytics  # YOLOv11官方库

在这里插入图片描述

三、数据集准备

1. 数据收集

  • 收集包含各类垃圾的图像,每类至少500-1000张
  • 确保图像包含不同角度、光照条件和背景
  • 可使用的公开数据集:
    • TrashNet
    • 中国垃圾分类数据集
    • TACO (Trash Annotations in Context)

2. 数据标注

  • 使用LabelImg或CVAT等工具进行标注
  • 标注格式为YOLO格式(.txt文件)
  • 类别定义示例:
    0 可回收物
    1 有害垃圾
    2 厨余垃圾
    3 其他垃圾
    

3. 数据集结构

dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

四、模型训练步骤

1. 配置文件准备

创建data.yaml文件:

train: dataset/images/train
val: dataset/images/val

4. 训练参数说明

  • epochs: 训练轮数,建议100-300
  • batch: 批次大小,根据显存调整
  • imgsz: 输入图像尺寸
  • device: 训练设备,'0’表示GPU 0
  • workers: 数据加载线程数
  • optimizer: 优化器选择
  • lr0: 初始学习率
  • weight_decay: 权重衰减
  • warmup_epochs: 学习率热身轮数
    在这里插入图片描述

五、模型评估与优化

1. 评估指标

  • mAP@0.5: 主要评估指标
  • Precision: 精确率
  • Recall: 召回率
  • F1-score: 精确率和召回率的调和平均
    在这里插入图片描述

2. 可视化训练过程

from ultralytics.utils.plots import plot_results

plot_results('runs/train/exp/results.csv')

3. 常见优化策略

  1. 数据增强

    • 添加旋转、翻转、色彩变换
    • 使用Mosaic和MixUp增强
  2. 模型调整

    • 更换更大模型(yolov11m, yolov11l)
    • 调整锚框(anchor)尺寸
  3. 超参数调优

    • 使用Optuna或Ray Tune进行自动化调参
    • 调整学习率调度策略

六、模型导出与部署

1. 导出为ONNX格式

model.export(format='onnx', imgsz=[640, 640], dynamic=True)

2. 部署选项

  1. Python部署

    model = YOLO('best.pt')
    results = model('test.jpg')
    
  2. TensorRT加速

    trtexec --onnx=model.onnx --saveEngine=model.engine
    
  3. 移动端部署

    • 转换为TFLite格式
    • 使用Core ML或NCNN

七、实际应用建议

  1. 实时检测优化

    • 对于摄像头输入,使用多线程处理
    • 调整检测置信度阈值(通常0.4-0.6)
  2. 持续学习

    • 收集误检样本加入训练集
    • 定期微调模型
  3. 性能平衡

    • 在速度和精度间权衡
    • 根据硬件选择合适模型尺寸

通过以上步骤,您可以成功训练一个高效的YOLOv11垃圾分类检测模型。实际应用中,建议从较小模型开始,根据需求逐步升级模型规模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值