目标检测+目标跟踪+姿态识别+图像分割+deepsort跟踪+bytetrack跟踪集成项目

基于YOLO-DeepSort/ByteTrack的PyQt智能视觉分析系统

系统概述

uByteTrack-PyQt-GUI 是一个集成了多模态AI视觉分析的图形化应用程序,该系统采用PyQt框架构建用户界面,结合Ultralytics YOLO系列模型实现高效的物体检测与追踪功能。支持从多种输入源(包括本地文件、实时摄像头、网络视频流)进行以下AI视觉任务处理:
在这里插入图片描述

  • 高精度物体检测与追踪
  • 实时人体姿态估计与追踪
  • 实例分割分析
  • 有向边界框检测(OBB)
    在这里插入图片描述

核心技术架构

1. 模型支持

系统兼容最新YOLO系列模型,包括:

  • YOLOv11系列:nano(n)、small(s)、medium(m)、large(l)、xlarge(x)五种规格
  • YOLOv8系列:涵盖从轻量级(nano)到超大模型(x)全系列
    所有模型均以优化后的ONNX格式运行,确保跨平台兼容性和推理效率

2. 多目标追踪引擎

集成两大先进追踪算法:

  • DeepSort:基于深度外观特征的强关联追踪算法
  • ByteTrack:通过低置信度检测框再利用实现高召回率追踪

3. 多源输入支持

  • 本地文件:支持JPEG/PNG等图片格式及MP4/AVI等视频格式
  • 实时摄像源:兼容USB摄像头、网络摄像头等设备
  • 网络视频流:支持RTSP/RTMP等流媒体协议

安装指南

在这里插入图片描述

基础环境配置

推荐使用Python 3.8+环境,提供两种安装方式:

pip安装方案
pip install -r requirements.txt
Conda环境方案
conda env create -f environment.yml
conda activate yolo_gui

模型权重部署

执行权重下载脚本自动获取预训练模型:

python download_weights.py

下载的模型权重将保存在weights/目录下,包含:

  • 物体检测模型(yolov8n.pt -> yolov8x.pt)
  • 姿态估计模型(yolov8n-pose.pt)
  • 分割模型(yolov8n-seg.pt)

系统运行

启动图形化主界面:

python main.py

功能扩展说明

1. 高级分析模块

  • 实时性能监控面板:显示FPS、显存占用等硬件指标
  • 自定义ROI区域:支持用户划定重点监测区域
  • 报警触发机制:可配置越界检测、滞留报警等智能规则

2. 数据处理能力

  • 批量处理模式:支持文件夹批量导入处理
  • 结果导出功能:生成包含检测框坐标的JSON/CSV报告
  • 视频合成输出:保存带分析标注的结果视频

3. 用户界面特性

  • 多视图布局:支持原始画面/分析结果同屏对比
  • 交互式控制:提供模型置信度阈值、追踪参数等实时调节滑块
  • 主题定制:内置明亮/暗黑多套UI主题

典型应用场景

  1. 智能安防监控:人员/车辆识别统计
  2. 工业质检:缺陷产品自动筛查
  3. 交通管理:违章行为自动抓拍
  4. 零售分析:顾客行为热力图生成
  5. 医疗辅助:康复训练动作标准化评估

技术优势

  1. 模型轻量化:最小模型仅4MB(yolov8n),可在边缘设备部署
  2. 多线程架构:独立处理视频解码、AI推理、UI渲染线程
  3. 硬件加速:自动调用CUDA/TensorRT进行推理加速
  4. 跨平台支持:兼容Windows/Linux/macOS操作系统

该系统将持续更新,后续版本计划增加ReID重识别、3D姿态估计等进阶功能,为用户提供更强大的视觉分析工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值