炸裂推荐!SCI最新算法海星优化无线传感器覆盖问题SFOA-WSN!学会直接上手!附Matlab代码

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

问题描述

WSN模型

算法简介

结果展示

参考文献

完整代码


今天给大家带来一期智能算法应用专题,也是优化算法论文里非常经典的一种应用。也正是因为经典,才会吸引如此多研究者将其作为判断算法性能的一个指标,同时,该应用可操作性与可扩展性也较强,审稿人也比较认可,因此非常适合小伙伴们放到自己的论文里。

本期代码以24年新算法海星优化算法SFOA为例,将该算法用以解决WSN覆盖优化问题,小伙伴们也可以自行替换成自己的算法,非常简单~

您只需做的工作:一键运行main文件,即可出图,非常适合新手小白!

问题描述

无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,通过大量的传感器节点部署形成自组织网络,被广泛应用于环境探测、智能交通和工业领域。但是随着无线传感器网络的普及,无线传感器网络覆盖优化问题的缺点逐渐开始暴露。

WSN的覆盖优化问题,可以简单描述为:在规定的可监测范围内针对传感器网络可连通情况下的传感器节点部署问题。为提高覆盖率,人们通常在范围内直接撒播大量节点,庞大的数量往往会提高部署密度从而达成目的,但会产生大量冗余节点,降低网络整体性能。而节点数目过少又会产生大量覆盖盲区,降低网络传输效率。因此需要对WSN中传感器节点的部署进行自适应调整,使节点在监测范围内分布的更均匀,节点覆盖率更高。

WSN模型

建立一个监测范围为S=L×L的二维正方形平面,并在该监测范围内随机播撒N个传感器节点,分别定义为C={C1,C2,…,CN},每个节点的位置Ci的坐标为(xi,yi), i=1,2,…,N,所有节点具有相同的通信半径R和感知半径r.传感器节点的感知范围均为以点(xi,yi)为中心,以r为半径的圆形区域.将该监测范围离散为m×n个像素点,定义为zj(xj,yj),j=1,2,…,m×n.计算像素点zj与任一节点Ci之间的欧式距离,记为d,如式(1)所示:

若d≤r,说明该像素点zj已被传感器节点Ci覆盖,反之则未被覆盖.像素点zj被传感器节点Ci感应到的概率如式(2)所示.

其中:Pcov(Ci,zj)为感知概率;r为传感器节点的感知半径.在监测范围内,任一像素点zj可同时被多个节点Ci所感应,定义zj的联合感知概率为::

其中:P(C,zj)为联合感知概率;N为范围内节点总数目;C为监测目标点的节点集合.区域覆盖率为传感器节点集合C所覆盖的像素点数占范围总像素点数的比例,定义为COV,其计算公式如下:

算法简介

海星优化算法(StarFish Optimization Algorithm, SFOA)于2024年12月发表在SCI期刊《Neural Computing and Applications》上!该算法灵感新颖且刚刚提出!目前,还没有使用该算法的文献,可以说,你先用,你就是创新!

原文作者在经典函数、CEC2017和CEC2022上的性能,并比较了100种不同的元启式算法。结果表明,SFOA算法超过了大部分SOTA算法,具有很强的寻优能力和收敛速度!

具体原理和测试效果可以查看这篇推文:

2024年12月SCI最新算法-海星优化算法(SFOA)-公式原理详解与性能测评 Matlab代码免费获取

结果展示

在我们的实验中,首先,设置优化算法的参数为种群大小为30,迭代次数为500。

同时,设置无线传感器的监测范围为100*100,通信半径为12,覆盖节点数50,得到的迭代曲线和结果图如下所示:

可以看到,在覆盖节点数为50的情况下,SFOA优化后的结果达到了98.23%,非常不错!这也超过了很多论文中的结果!说明该算法的适应性很强,不仅可以有效提高网络覆盖率,而且可以降低冗余,以此减少节点数目和降低部署成本,拿来做算法应用可以说完全没问题!

当然,如果你想要更好的结果,迭代1000次及以上也都是没问题的!同时也要注意,优化算法具有随机性,运行多次可能结果不同。

参考文献

[1]贾鹤鸣,孟彬,魏元昊,等.改进算术优化算法的无线传感器网络覆盖[J].闽南师范大学学报(自然科学版),2022,35(03):54-61.

完整代码

如果需要以上完整代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

SFOAWSN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值