2024年新算法-冠豪猪优化算法(CPO)-公式原理详解与性能测评 附赠Matlab代码

目录

原理简介

一、种群初始化

二、循环种群减少技术

三、勘探阶段

(1)第一防御策略

(2)第二防御策略

四、开发阶段

(1)第三防御策略

(2)第四防御策略

算法流程图与伪代码

性能测评

Matlab核心代码

参考文献


今天为大家带来一期冠豪猪优化算法(CPO)-公式原理详解与性能测评,独家原创!适合作为创新点!具体代码已放在最后,需要代码的朋友可直接拉到最后~

冠豪猪优化器(Crested Porcupine Optimizer, CPO)是一种新型的元启发式算法(智能优化算法),该成果由Abdel-Basset等人于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。

由于发表时间较短,谷歌学术上还无人引用!你先用,你就是创新!

原理简介

冠豪猪(CP)是一种大型啮齿动物,生活在除南极洲以外的所有大陆,分布在森林、沙漠、岩石露头和山坡上。CP是仅次于水豚和海狸的第三大啮齿动物。大多数有冠豪猪大约有25-36英寸长,尾巴8-10英寸。它们的体重在12到35磅之间,呈圆形,体型较大,行动迟缓。大多数CP的身体覆盖着深棕色或黑色的刚毛,偶尔会有白色的斑点。它们最显著的特征是它们的羽毛很宽,沿着身体的后半部分延伸,长度可达14英寸。冠豪猪是夜间食草动物,以灌木和树叶等多种植物为食。尽管它们生活在小家庭中,但它们倾向于独自觅食,寻找长达九英里的食物。它们之所以如此命名,是因为它们的头、颈背、尾巴和身体后部都有长长的羽毛~

CPO模拟了冠豪猪的各种防御行为。冠豪猪的四种防御策略是视觉、声音、气味和身体攻击。这些策略从最不激进到最激进排序。在CPO中,我们可以可视化搜索空间,如下图所示;四个不同的区域模拟了防御CP区域。第一个区域(A),CP远离捕食者,代表第一个防御区域,用于实施第一个防御策略。第二区域(B)代表第二防御区域,用于在捕食者不害怕第一防御机制并向捕食者移动的情况下实施第二防御策略。第三区域(C)代表第三防御区,用于实施第三防御策略,当捕食者不害怕第二和第三防御机制,仍向CP移动时,该策略被激活。最后一个区域(D)代表最后一个防御区域,用于实施最后一个防守策略。在最后一个区域,在之前的所有防御机制失效后,CP会攻击捕食者,使其失去能力,甚至杀死它们以保护自己。

一、种群初始化

与其他基于元启发式群体的算法类似,CPO从初始个体集(候选解决方案)开始搜索过程:

其中N表示个体数量(种群大小N),Xi是搜索空间中的第i个候选解,L和U分别是搜索范围的下限和上限,r是在0和1之间随机数

二、循环种群减少技术

循环种群减少技术(CPR),除了加快收敛速度外,还可以保持种群多样性。这种策略模拟了这样一种想法,即并非所有CP都激活防御机制,而是只有那些受到威胁的CP才激活防御机制。因此,在该策略中,在优化过程中从种群中获得一些CP,以加快收敛速度,并将它们重新引入种群中,从而提高多样性,避免陷入局部极小值;该循环基于循环变量T,以确定优化过程中执行该过程的次数(图3)。循环减少人口规模的数学模型如下:

其中,T是确定循环数的变量,t是当前函数评估,Tmax是函数评估的最大数量,%表示余数或模运算符,Nmin是新生成的种群中个体的最小数量,因此种群大小不能小于Nmin。随着当前函数评估次数的增加,人口规模逐渐减少,甚至达到40人。这表示第一个循环。之后,种群规模再次最大化,然后逐渐减小,甚至达到优化过程的终点。这表示第二个也是最后一个周期,因为T被设置为2。由此可以看出,种群规模先是最大化,然后逐渐缩小,甚至达到Nmin。

三、勘探阶段

(1)第一防御策略

当CP意识到捕食者时,它开始举起并扇动羽毛笔,给人一种更深的印象。因此,捕食者有两种选择,要么向它移动,要么远离它。在第一种选择中,由于捕食者向CP移动,捕食者与CP之间的距离减小。这种选择鼓励探索捕食者与CP间的区域,以加快收敛速度。相反,在第二种选择中,捕食者和CP之间的距离最大化,因为捕食者选择离开。此选项鼓励探索遥远的地区,以确定未访问的地区,这可能涉及所需的解决方案。使用正态分布来生成随机值,以数学方式模拟这些选项。如果这些随机值小于1或大于−1,则鼓励向CP靠近。否则,捕食者将远离CP。通常,这种行为在数学上模拟如下:

其中xtCP是评估函数t的最佳解,yti是在当前CP和从种群中随机选择的CP之间生成的向量,用于表示捕食者在迭代t时的位置,τ1是基于正态分布的随机数,τ2是区间[0,1]中的随机值。生成yti的数学公式如下所示:

其中r是[1,N]之间的随机数。

(2)第二防御策略

在这种策略中,CP使用声音方法制造噪音并威胁捕食者。当捕食者靠近豪猪时,豪猪的声音会变得更大。为了从数学上模拟这种行为,提出了以下公式:

其中r1和r2是[1,N]之间的两个随机整数,τ3是0和1之间生成的随机值。

四、开发阶段

(1)第三防御策略

在这种策略中,CP会分泌恶臭,并在其周围区域传播,以防止捕食者靠近它。为了从数学上模拟这种行为,提出了以下公式:

其中r3是[1,N]之间的随机数,δ是用于控制搜索方向的参数,并使用等式(8)定义。xti是迭代t时第i个个体的位置,γt是使用等式(9)定义的防御因子。τ3是区间[0,1]内的随机值,Sti是使用(10)等式定义的气味扩散因子。如下所示:

其中,f(xit)表示迭代t时第i个个体的目标函数值,ε是避免被零除的小值,rand是包括在0和1之间随机生成的数值的矢量,rand是包括在1和0之间随机生成数字的变量,N是总体大小,t是当前迭代的次数,tmax是最大迭代次数。U1矢量用于模拟该策略中可能出现的三种情况:

(1)当U1 等于0,CP将停止气味扩散,因为捕食者会因为害怕CP而停止移动,因此捕食者与CP之间的距离保持不变;

(2)当U1等于1时,由于捕食者在附近,CP会显著散发气味;

(3) 当U1是0和1的组合,捕食者与CP保持安全距离,因此,没有必要广泛释放其气味。

(2)第四防御策略

最后一种策略是物理攻击。当捕食者离它很近并用短而厚的羽毛攻击它时,CP会采取物理攻击。在物理攻击过程中,两个物体强烈融合,代表一维的非弹性碰撞。为了用数学公式表达其物理攻击行为,提出了以下公式:

其中xtCP是获得的最佳解,表示xtiCP在迭代t时第i个个体的位置,表示该位置的捕食者,α是稍后在参数设置部分讨论的收敛速度因子,τ4是区间[0,1]内的随机值,Fti是影响第i个捕食者的CP的平均力。它由非弹性碰撞定律提供并由公式(12)定义:

其中mi是迭代t时第i个个体(捕食者)的质量,f(‧)表示目标函数,vi(t+1)是第i个个体在下一次迭代t+1时的最终速度,并基于从当前总体中选择随机解进行分配,vti是迭代t时第i个个体的初始速度,Δt是当前迭代的次数,τ6是包括在0和1之间生成的随机值的向量。在等式(12)中,基于分子除以当前迭代来计算CP的平均力,当前迭代在优化过程中线性增加。因此,CP的平均力的影响逐渐最小化。事实上,这个因素的小值对CPO的性能并不不利,因为它们可能无助于利用迄今为止最好的解决方案周围的各个区域来找到更好的解决方案。因此,通过删除分子并仅依赖于分母,如公式(13)所示。这种方法将有助于在搜索空间内创建广泛的值,从而对迄今为止最好的解决方案周围的区域进行更全面的检查。

算法流程图与伪代码

性能测评

原文作者采用CEC2014、CEC2017和CEC2020三个CEC基准对CPO进行了验证,这里我采用经典的23个标准测试函数进行测试,也方便大家与自己的算法进行比较~

这边用了5个函数,并与2023年新出的霜冰优化算法进行比较,方便看出好坏~

可以看出,CPO的效果还是非常不错的,值得一用~

Matlab核心代码

function [Gb_Fit,Gb_Sol,Conv_curve]=CPO(Pop_size,Tmax,lb,ub,dim,fobj)

%%%%-------------------Definitions--------------------------%%
%%
Conv_curve=zeros(1,Tmax);
ub=ub.*ones(1,dim);
lb=lb.*ones(1,dim);
%%-------------------Controlling parameters--------------------------%%
%%
N=Pop_size; %% Is the initial population size.
N_min=round(0.8*Pop_size); %% Is the minimum population size.
T=2; %% The number of cycles
alpha=0.2; %% The convergence rate
Tf=0.8; %% The percentage of the tradeoff between the third and fourth defense mechanisms

%%---------------Initialization----------------------%%
%%
X=initialization(Pop_size,dim,ub,lb); % Initialize the positions of crested porcupines
t=0; %% Function evaluation counter 
%%---------------------Evaluation-----------------------%%
for i=1:Pop_size
    fitness(i)=fobj(X(i,:));
end
% Update the best-so-far solution
[Gb_Fit,index]=min(fitness);
Gb_Sol=X(index,:);    
%% A new array to store the personal best position for each crested porcupine
Xp=X;

%%  Optimization Process of CPO
while t<=Tmax 
    r2=rand;
    for i=1:Pop_size
        
        U1=rand(1,dim)>rand;
        if rand<rand %% Exploration phase
            if rand<rand %% First defense mechanism
                %% Calculate y_t
                y=(X(i,:)+X(randi(Pop_size),:))/2;
                X(i,:)=X(i,:)+(randn).*abs(2*rand*Gb_Sol-y);
            else %% Second defense mechanism
                y=(X(i,:)+X(randi(Pop_size),:))/2;
                X(i,:)=(U1).*X(i,:)+(1-U1).*(y+rand*(X(randi(Pop_size),:)-X(randi(Pop_size),:)));
            end
        else
             Yt=2*rand*(1-t/(Tmax))^(t/(Tmax));
             U2=rand(1,dim)<0.5*2-1;
             S=rand*U2;
            if rand<Tf %% Third defense mechanism
                %% 
                St=exp(fitness(i)/(sum(fitness)+eps)); % plus eps to avoid division by zero
                S=S.*Yt.*St;
                X(i,:)= (1-U1).*X(i,:)+U1.*(X(randi(Pop_size),:)+St*(X(randi(Pop_size),:)-X(randi(Pop_size),:))-S); 

            else %% Fourth defense mechanism
                Mt=exp(fitness(i)/(sum(fitness)+eps));
                vt=X(i,:);
                Vtp=X(randi(Pop_size),:);
                Ft=rand(1,dim).*(Mt*(-vt+Vtp));
                S=S.*Yt.*Ft;
                X(i,:)= (Gb_Sol+(alpha*(1-r2)+r2)*(U2.*Gb_Sol-X(i,:)))-S; 
            end
        end
        %% Return the search agents that exceed the search space's bounds
        for j=1:size(X,2)
            if  X(i,j)>ub(j)
                X(i,j)=lb(j)+rand*(ub(j)-lb(j));
            elseif  X(i,j)<lb(j)
                X(i,j)=lb(j)+rand*(ub(j)-lb(j));
            end

        end  
         % Calculate the fitness value of the newly generated solution
         nF=fobj(X(i,:));
        %% update Global & Personal best solution
        if  fitness(i)<nF
            X(i,:)=Xp(i,:);    % Update local best solution
        else
            Xp(i,:)=X(i,:);
            fitness(i)=nF;
            %% update Global best solution
            if  fitness(i)<=Gb_Fit
                Gb_Sol=X(i,:);    % Update global best solution
                Gb_Fit=fitness(i);
            end
        end

    end
    Pop_size=fix(N_min+(N-N_min)*(1-(rem(t,Tmax/T)/Tmax/T)));
    t=t+1; % Move to the next generation
    if t>Tmax
        break
    end
    Conv_curve(t)=Gb_Fit;
 end
end


% This function initialize the first population of search agents
function Positions=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % number of boundaries

% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end

% If each variable has a different lb and ub
if Boundary_no>1
    for i=1:dim
        ub_i=ub(i);
        lb_i=lb(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end
end
end

参考文献

[1]Abdel-Basset M, Mohamed R, Abouhawwash M. Crested Porcupine Optimizer: A new nature-inspired metaheuristic[J]. Knowledge-Based Systems, 2024, 284: 111257.​

CPO函数代码已全部奉上,如果需要图中的完整测试代码,只需点击下方小卡片,后台回复关键字,不区分大小写:

CPO

也可点击小卡片,后台回复个人需求定制CPO优化模型:

1.回归/时序/分类预测类:SVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、ESN等等均可~

2.组合预测类:CNN-SVM、CNN-LSTM/BiLSTM/GRU/BiGRU-Attention、Adaboost类、DBN-SVM等均可~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、CEEMDAN、ICEEMDAN、SVMD等分解模型均可~

4.其他:机器人路径规划、无人机三维路径规划、DBSCAN聚类、VRPTW路径优化、微电网优化、无线传感器覆盖优化、故障诊断等等均可~

  • 33
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值