声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~
目录
今天给大家带来一期多目标蜻蜓算法MODA的代码,蜻蜓算法是有大名鼎鼎的Seyedali Mirjalili作者于2016年提出来的,这位作者也是灰狼优化算法、鲸鱼优化算法的提出者。在这篇文章中,他同时提出了单目标蜻蜓算法以及多目标蜻蜓算法。
在单目标蜻蜓算法中,算法在连续搜索空间中展现出强大的全局‑局部平衡能力,而多目标蜻蜓算法则借助档案‑分段‑概率引导机制成功扩展到多目标优化,在保持收敛精度的同时显著提升前沿分布的均匀性。
相比于单目标算法,多目标算法考虑的内容更多,更容易受到审稿人的青睐。因此,本文将介绍该算法的原理与代码。
本期代码免费赠送,需要代码的小伙伴可直接拉到最后!
单目标蜻蜓算法
首先介绍下单目标蜻蜓算法,这也是多目标蜻蜓算法的基础。作者把蜻蜓在捕食与迁徙时呈现的静态群(小范围盘旋捕食)与动态群(大规模同向迁徙)分别对应于元启发式搜索的“探索”和“开发”阶段,依托五种社会交互力与一条随机游走轨迹,配合邻域半径与权重的自适应调节,使搜索能够从全局漫游逐步收敛到全局最优。
一、群体交互模型
对任意个体X,其“分离、对齐、聚合、趋食、避敌”五种校正向量分别定义为:
其Xj,Vj为第j个邻居的位置和步长,N为邻居数量,X+与 X−分别是食物源与天敌的位置。
二、步长与位置更新
引入与 PSO 速度对应的步长 ΔX,并以权重s,a,c,f,e及惯性因子w组合上述向量得到:
五权重由探索阶段“高对齐、低聚合”向开发阶段“低对齐、高聚合”线性转变,邻域半径亦随迭代扩大,使所有个体最终汇聚到同一食物源。
三、随机游走补偿
当个体在其邻域内找不到同伴时,改用莱维飞行随机游走:
其中β=1.5;Levy(β)=0.01*r1σ/∣r2∣^1/β,σ为伽玛函数表达式,r1,r2∼U(0,1)。该机制维持种群多样性并有助于跳出局部极值。
四、食物/天敌更新
每轮迭代根据目标函数值从当前种群中选出最优个体作食物源、最劣个体作天敌,并据此驱动全体收敛或远离。
五、自适应探索‑开发转换
随着迭代计数t增大,权重与邻域半径按线性或指数方式调节,实现从多簇静态捕食到单簇动态迁徙的平滑过渡,保证全局收敛。
多目标蜻蜓算法
在 DA 基础上,作者引入外部档案(Archive)维护帕累托最优解,辅以自适应分段选择机制,实现对收敛性与分布均匀性的同步优化。
一、档案管理与超球分段
算法预设最大档案容量与分段数H。每次迭代把新产生的非支配解与档案做 dominance检查:若被档案成员支配则丢弃;若支配档案中部分解则删除被支配解后加入;若互不支配则直接加入,若容量已满则从最拥挤分段随机删除以腾位。分段方式为:以档案中各目标最优最劣值构造一个包络超球并等距划分成H个子超球。
二、食物源选择:稀疏优先
Ni为第i个子超球的档案个体数,通过轮盘赌在较稀疏区域选食物源,引导种群向帕累托前沿缺口移动,改善覆盖度。
三、天敌选择:拥挤优先
利用轮盘赌在最拥挤子超球中抽取天敌,使个体远离过密区域,避免集中。
四、群体更新
位置与步长仍按单目标公式 (2) 执行;但当个体缺乏邻居时,仍采用公式 (3) 的莱维飞行。更新后将新解与档案合并并重新计算分段,循环至终止条件满足。
五、收敛‑分布协同机制
通过“稀疏吸引、拥挤排斥”的食物/敌人对产生引导力,配合逐步增大的邻域与权重调节,使 MODA 能在保证靠近真实帕累托面的同时得到分布均匀的前沿。
伪代码
为了更清晰的展示MODE的原理,这边给出MODE算法的伪代码,非常清晰~
性能测评
为这边以多目标函数“ZDT1”为例,设置种群数量为100,外部存档大小为100,迭代次数为100,检测一下MODA的性能:
可以看到,黑色的各个前沿种群均接近真实帕累托最优解,且分布性良好,可见算法性能还是不错的~
参考文献
[1]Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural computing and applications, 2016, 27: 1053-1073.
完整代码
MODA完整代码如下:
% Initial parameters of the MODA algorithm
max_iter=100;
N=100;
ArchiveMaxSize=100;
Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;
Archive_member_no=0;
r=(ub-lb)/2;
V_max=(ub(1)-lb(1))/10;
Food_fitness=inf*ones(1,obj_no);
Food_pos=zeros(dim,1);
Enemy_fitness=-inf*ones(1,obj_no);
Enemy_pos=zeros(dim,1);
X=initialization(N,dim,ub,lb);
fitness=zeros(N,2);
DeltaX=initialization(N,dim,ub,lb);
iter=0;
position_history=zeros(N,max_iter,dim);
for iter=1:max_iter
r=(ub-lb)/4+((ub-lb)*(iter/max_iter)*2);
w=0.9-iter*((0.9-0.2)/max_iter);
my_c=0.1-iter*((0.1-0)/(max_iter/2));
if my_c<0
my_c=0;
end
if iter<(3*max_iter/4)
s=my_c; % Seperation weight
a=my_c; % Alignment weight
c=my_c; % Cohesion weight
f=2*rand; % Food attraction weight
e=my_c; % Enemy distraction weight
else
s=my_c/iter; % Seperation weight
a=my_c/iter; % Alignment weight
c=my_c/iter; % Cohesion weight
f=2*rand; % Food attraction weight
e=my_c/iter; % Enemy distraction weight
end
for i=1:N %Calculate all the objective values first
Particles_F(i,:)=ObjectiveFunction(X(:,i)');
if dominates(Particles_F(i,:),Food_fitness)
Food_fitness=Particles_F(i,:);
Food_pos=X(:,i);
end
if dominates(Enemy_fitness,Particles_F(i,:))
if all(X(:,i)<ub') && all( X(:,i)>lb')
Enemy_fitness=Particles_F(i,:);
Enemy_pos=X(:,i);
end
end
end
[Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, X, Particles_F, Archive_member_no);
if Archive_member_no>ArchiveMaxSize
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
[Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
else
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
end
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
% Chose the archive member in the least population area as foods
% to improve coverage
index=RouletteWheelSelection(1./Archive_mem_ranks);
if index==-1
index=1;
end
Food_fitness=Archive_F(index,:);
Food_pos=Archive_X(index,:)';
% Chose the archive member in the most population area as enemies
% to improve coverage
index=RouletteWheelSelection(Archive_mem_ranks);
if index==-1
index=1;
end
Enemy_fitness=Archive_F(index,:);
Enemy_pos=Archive_X(index,:)';
for i=1:N
index=0;
neighbours_no=0;
clear Neighbours_V
clear Neighbours_X
% Find the neighbouring solutions
for j=1:N
Dist=distance(X(:,i),X(:,j));
if (all(Dist<=r) && all(Dist~=0))
index=index+1;
neighbours_no=neighbours_no+1;
Neighbours_V(:,index)=DeltaX(:,j);
Neighbours_X(:,index)=X(:,j);
end
end
% Seperation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.1)
S=zeros(dim,1);
if neighbours_no>1
for k=1:neighbours_no
S=S+(Neighbours_X(:,k)-X(:,i));
end
S=-S;
else
S=zeros(dim,1);
end
% Alignment%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.2)
if neighbours_no>1
A=(sum(Neighbours_V')')/neighbours_no;
else
A=DeltaX(:,i);
end
% Cohesion%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.3)
if neighbours_no>1
C_temp=(sum(Neighbours_X')')/neighbours_no;
else
C_temp=X(:,i);
end
C=C_temp-X(:,i);
% Attraction to food%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.4)
Dist2Attraction=distance(X(:,i),Food_pos(:,1));
if all(Dist2Attraction<=r)
F=Food_pos-X(:,i);
iter;
else
F=0;
end
% Distraction from enemy%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.5)
Dist=distance(X(:,i),Enemy_pos(:,1));
if all(Dist<=r)
E=Enemy_pos+X(:,i);
else
E=zeros(dim,1);
end
for tt=1:dim
if X(tt,i)>ub(tt)
X(tt,i)=lb(tt);
DeltaX(tt,i)=rand;
end
if X(tt,i)<lb(tt)
X(tt,i)=ub(tt);
DeltaX(tt,i)=rand;
end
end
if any(Dist2Attraction>r)
if neighbours_no>1
for j=1:dim
DeltaX(j,i)=w*DeltaX(j,i)+rand*A(j,1)+rand*C(j,1)+rand*S(j,1);
if DeltaX(j,i)>V_max
DeltaX(j,i)=V_max;
end
if DeltaX(j,i)<-V_max
DeltaX(j,i)=-V_max;
end
X(j,i)=X(j,i)+DeltaX(j,i);
end
else
X(:,i)=X(:,i)+Levy(dim)'.*X(:,i);
DeltaX(:,i)=0;
end
else
for j=1:dim
DeltaX(j,i)=s*S(j,1)+a*A(j,1)+c*C(j,1)+f*F(j,1)+e*E(j,1) + w*DeltaX(j,i);
if DeltaX(j,i)>V_max
DeltaX(j,i)=V_max;
end
if DeltaX(j,i)<-V_max
DeltaX(j,i)=-V_max;
end
X(j,i)=X(j,i)+DeltaX(j,i);
end
end
Flag4ub=X(:,i)>ub';
Flag4lb=X(:,i)<lb';
X(:,i)=(X(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
end
display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end
其中有部分函数封装为了子函数,因篇幅原因文章中无法全部放下。因此,需要完整代码(能够运行出性能测评中的图片)的小伙伴只需点击下方小卡片,再后台回复关键词,不区分大小写:
MODA