通过matlab的遗传算法工具求解规划问题

文章介绍了如何使用MATLAB的Optimization工具箱以及高版本中的ga函数来实施遗传算法解决规划问题。详细阐述了目标函数、约束条件的设定,包括不等式约束、等式约束和变量范围,并展示了函数调用的示例代码。此外,还提及了迭代图的绘制和算法参数的调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matlab的Optimization工具中有遗传算法工具箱,可利用该界面工具求解规划问题。

   界面定义:

@fun            目标函数(最后小化问题)
   A*x<=b          不等式约束
   Aeq * x = beq   等式约束
   lb<=x<=ub       未知数范围  ,约束了每一个变量的范围
   @nonlcon        非线性约束
   [c,ceq] = con_fun(x) 其中 c代表c<=0 ceq代表 ceq=0

intcon          变量的输入是否为整数 (输入为一个矩阵)当输入[1 2]表示第一个变量和第二个变量为整数

 目标函数格式:

function f = fun(x)
    f=-5*sin(x(1)) * sin(x(2)) *sin(x(3)) *sin(x(4)) *sin(x(5))-...
    sin(5*x(1)) *sin(5*x(2))*sin(5*x(3))*sin(5*x(4))* sin(5*x(5))+8;
end

 目标函数和约束条件设置好后,点击s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值