Newey-West
对于预测误差均值的t 检验,在通常情况下应该由预测误差的样本均值和样本方差来检验,但是由于重叠观测(overlapping problem)的问题,所以预测误差是服从MA(k-1) 的过程,即:
但是预测残差的方差就需要调整, 本文采用Newey-West的自相关异方差一致性估计 (autocorrelation and heteroskedastisity consistent covariance estimates)来调整预测误差的方差,以此来调整 t统计量值。同样的方法被 Longstaff 和 Wang(2002)所采用。
Newey-West 的自相关异方差一致性估计
当异方差的形式未知的时候,加权最小二乘法(WLS)得到的估计结果虽然仍具有一致性,但是不在有效。为了解决这一问题,White(1980)提出了Heteroskedasticity Consistent Covariances 方法使存在异方差时能够对协方差矩阵进行一致性估计,而无须知道异方差的形式,但是 White 提出的方法假定序列的残差是不存在自相关的,为了解决这一问题,Newey-West(1987)提出了一个更为一般的估计量,使存在异方差和自相关是仍然能对协方差矩阵进行一致性估计。