目标检测论文综述(二)Two-Stage(R-CNN系列)

本文综述了从R-CNN到Mask R-CNN的Two-Stage目标检测方法,包括SPP-Net、Fast R-CNN、Faster R-CNN等。这些方法针对传统目标检测的效率和精度问题,提出了如ROI Pooling、SPP Layer、RPN等创新技术,实现了从对象检测到实例分割的演进。文章通过简洁的PPT形式总结每篇论文的核心创新点,便于快速理解目标检测领域的进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、CNN based Two-Stage Detectors

所有论文综述均保持如下格式:
1、一页PPT内容总结一篇论文
2、标题格式一致:出处 年份 《标题》
3、内容格式一致:针对XX问题;提出了XX方法;本文证明了XXX
4、把握核心创新点,言简意赅
5、官方源码链接

强烈推荐:目标检测论文资源列表(各目标检测网络性能对比、论文链接、官方/非官方代码链接)
https://github.com/hoya012/deep_learning_object_detection#2014
作者GitHub里面的图片列出了目标检测网络近年来的一些里程碑
在这里插入图片描述

一、CVPR 2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentation》
  • 针对:传统目标检测耗时、耗内存、精度低
  • 提出了:通过选择性搜索(Selective Search)提取感兴趣区域候选框proposal,将每个proposal缩放为固定大小的图像,输入到ImageNet训练的CNN模型中并提取特征,线性SVM分类器用于预测每个区域内对象类别,回归器调整目标框。
    在这里插入图片描述
    缺点:训练分多个步骤;正负样本候选区域由SS生成,算法速度受限,CNN对每一个生成的候选区域进行一次特征提取,存在大量重复计算,检测速度慢。
  • 本文证明了:使用卷积神经网络进行特征提取;使用bounding box regression进行目标包围框的修正
  • GitHub官方源码(caffe)
二、ECCV 2014《SPP-Net:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》
  • 针对:CNN模型全连接层需固定大小的输入,crop或者warp导致
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值