一、CNN based Two-Stage Detectors
所有论文综述均保持如下格式:
1、一页PPT内容总结一篇论文
2、标题格式一致:出处 年份 《标题》
3、内容格式一致:针对XX问题;提出了XX方法;本文证明了XXX
4、把握核心创新点,言简意赅
5、官方源码链接
强烈推荐:目标检测论文资源列表(各目标检测网络性能对比、论文链接、官方/非官方代码链接)
https://github.com/hoya012/deep_learning_object_detection#2014
作者GitHub里面的图片列出了目标检测网络近年来的一些里程碑
一、CVPR 2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentation》
- 针对:传统目标检测耗时、耗内存、精度低
- 提出了:通过选择性搜索(Selective Search)提取感兴趣区域候选框proposal,将每个proposal缩放为固定大小的图像,输入到ImageNet训练的CNN模型中并提取特征,线性SVM分类器用于预测每个区域内对象类别,回归器调整目标框。
缺点:训练分多个步骤;正负样本候选区域由SS生成,算法速度受限,CNN对每一个生成的候选区域进行一次特征提取,存在大量重复计算,检测速度慢。 - 本文证明了:使用卷积神经网络进行特征提取;使用bounding box regression进行目标包围框的修正
- GitHub官方源码(caffe)
二、ECCV 2014《SPP-Net:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》
- 针对:CNN模型全连接层需固定大小的输入,crop或者warp导致