微调大模型优化揭秘——什么时候该Finetune?什么时候用Prompt?

大模型只是起步,微调优化能让它更强 ——— 来自谷歌CEO皮查伊专访。

图片

上期推文带大家科普了LLM微调具体方法及特点等技术原理,相信大家对微调都有更深入的理解。本期我们将继续推进,分别从大模型压缩、数据质量处理以及微调应用范式展开,包括原理、方法、具体实现等,并结合这些技术给大家带来更好地微调优化。

本文大纲

1. 模型压缩

•  模型稀疏

•  模型量化

•  模型蒸馏

2. 数据质量

•  预训练数据

•  微调数据

3. 应用范式

•  微调范式

•  多种不同的高效微调方法对比

•  当前高效微调技术存在的一些问题

•  高效微调技术最佳实践

1. 模型压缩

模型压缩的基本动机在于当前的模型是冗余的,可以在精度损失很小的情况下实现模型小型化,主要包括 3 类方法:稀疏(Sparsity)、量化(Quantization)、蒸馏(Distillation)。

稀疏(Sparsity)

实现稀疏(Sparsity)的一个重要方法是剪枝(Pruning)。剪枝是在保留模型容量的情况下,通过修剪不重要的模型权重或连接来减小模型大小。它可能需要也可能不需要重新培训。修剪可以是非结构化的或结构化的。

• 非结构化剪枝允许删除任何权重或连接,因此它不保留原始网络架构。非结构化剪枝通常不适用于现代硬件,并且不会带来实际的推理加速。

• 结构化剪枝旨在维持某些元素为零的密集矩阵乘法形式。他们可能需要遵循某些模式限制才能使用硬件内核支持的内容。当前的主流方法关注结构化剪枝,以实现 Transformer 模型的高稀疏性。

关于剪枝稀疏的基本原理重要的结构化剪枝的 LLM 

压缩方法:https://arxiv.org/pdf/2305.11627.pdf

图片

除了以上介绍的稀疏方法外,还有其他的稀疏化方法,包括但不限于:

SparseGPT

该方法的工作原理是将剪枝问题简化为大规模的稀疏回归实例。它基于新的近似稀疏回归求解器,用于解决分层压缩问题,其效率足以在几个小时内使用单个 GPU 在最大的 GPT 模型(175B 参数)上执行。同时,SparseGPT 准确率足够高,不需要任何微调,剪枝后所损耗的准确率也可以忽略不计。

LLM-Pruner

遵循经典的“重要性估计-剪枝-微调”的策略,能够在有限资源下完成大语言模型的压缩,结果表明即使剪枝 20% 的参数,压缩后的模型保留了 93.6% 的性能。

Wanda

该方法由两个简单但必不可少的组件构成——剪枝度量和剪枝粒度。剪枝度量用来评估权重的重要性,然后按照剪枝粒度进行裁剪。该方法在 65B 的模型上只需要 5.6 秒就可以完成剪枝,同时达到 SparseGPT 相近的效果。

以上主要实现了稀疏的方法,那么对于稀疏后的模型如何加速呢?NVIDIA Ampere 架构对与结构化稀疏做了专门的稀疏加速单元,下图展示了结构化稀疏的物理表示:

图片

结构化稀疏表示

下图展示了稀疏单元 GEMM 计算与标准 GEMM 计算的区别 (详细解释参见:https://arxiv.org/pdf/2104.08378.pdf )

图片

量化(Quantization)

A. 量化方法介绍

常见量化有两种常见方法:

训练后量化(PTQ)

模型首先经过训练以达到收敛,然后我们将其权重转换为较低的精度,而无需进行更多训练。与训练相比,实施起来通常相当便宜。

量化感知训练(QAT)

在预训练或进一步微调期间应用量化。QAT 能够获得更好的性能,但需要额外的计算资源和对代表性训练数据的访问。

实际上,由于 GPU 内核缺乏对某些类型的矩阵乘法(例如 INT4 x FP16)的支持,理论最优量化策略与硬件内核支持之间的差距,并非以下所有方法都能加速实际推理。

关于量化的基本原理和实现细节,可参考:

https://arxiv.org/pdf/2208.07339.pdf

图片

许多关于 Transformer

  • 24
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值