1、在一个文件夹内保存和恢复单个模型
saver = tf.train.Saver()
sess = tf.Session()
# 保存
saver.save(sess,save_path) # 例如save_path='./model/ckpt'
# 恢复
saver.restore(sess,save_path) # save_path 与保存时的save_path相同
# 使用
model = Model() # Model是以类的形式定义的一个模型,训练时也是通过这个类来获得模型的
x_input = model.x_input # 在Model中以placeholder形式定义的输入
y_output = model.y_output # 在Model中定义的输出
result = sess.run(y_output,feed_dict={x_input:data})
2、在一个文件加内按迭代次数保存多个模型
saver = tf.train.Saver(max_to_keep=n) # 允许保存的模型数,默认为5,超过max_to_keep会把最开始保存的模型删除
sess = tf.Session()
# 保存
saver.save(sess,save_path,global_step=epoch) # global_step,保存的模型的迭代次数
# 恢复,只能恢复最新的模型
model_path = tf.train.latest_checkpoint(save_path) # 获得最新的模型路径
saver.restore(sess,model_path)
# 使用,与第一种方式一致
model = Model() # Model是以类的形式定义的一个模型,训练时也是通过这个类来获得模型的
x_input = model.x_input # 在Model中以placeholder形式定义的输入
y_output = model.y_output # 在Model中定义的输出
result = sess.run(y_output,feed_dict={x_input:data})
3、恢复特定的参数
# 恢复
meta_path = save_path+'.meta'
saver = tf.train.import_meta_graph(meta_path)
graph = tf.get_default_graph()
input = graph.get_tensor_by_name('input_placeholder:0') # input_placeholder:0 在模型定义时的名字
a_val = graph.get_tensor_by_name('a_val:0')
result = graph.get_tensor_by_name('output:0')
model_path = save_path
result = sess.run(result,feed_dict={input:data}) # 获得输出
a = sess.run(a_val) # 获得模型中名字为a_val:0 的参数值