逆元求解方法

定义

a b = c \frac{a}{b}=c ba=c时,可以看成是 a × b − 1 = c a\times b^{-1}=c a×b1=c。令 x = b − 1 x=b^{-1} x=b1,即有 a × x = c a \times x=c a×x=c x x x b b b的逆元。

当计算都在模 p p p下意义下时,对于分数,负数是不能直接取模的,因此负数需要加上 p p p,而分数则由分子乘以分母的逆元,然后再对积取模。

计算逆元有三个方法:

扩展欧几里得

单个查找效率很高,尤其是当mod p p p较大的时候。
利用扩展欧几里得求解线性同余方程 a × x ≡ c m o d    b a\times x\equiv c \mod b a×xcmodb的c为1时的情况,转化出来的是: a × x + b × y = 1 a\times x+b\times y = 1 a×x+b×y=1
求解该方程的解。

ll x,y;
void exgcd(ll a,ll b){//最终的x为所求的逆元
	if(b==0){
		x = 1,y = 0;
		return 0;
	}
	exgcd(b,a%b);
	ll k;
	k = x;
	x = y;
	y = k-(a/b)*y;
}

快速幂

这里需要引用费马小定理。

p p p为素数,a为正整数,且 a , p a,p a,p互质,则有 a p − 1 ≡ 1 m o d    p a^{p-1}\equiv 1\mod p ap11modp

那么对于 a × x ≡ 1 m o d    p a\times x\equiv 1\mod p a×x1modp
a × x ≡ a p − 1 m o d    p a\times x\equiv a^{p-1}\mod p a×xap1modp
x ≡ a p − 2 m o d    p x \equiv a^{p-2} \mod p xap2modp
即a一个数的逆元可以是其另一个与模数互质的因数的p-2次幂。
求解幂,可以采用快速幂的方法。

const int p ;//模数
ll qpow(ll a,ll b){//取逆元时,b = p-2即可
	ll ans = 1;
	while(b){
		if(b&1) ans = ans*a%p;
		b>>=1;
		a*=a;
		a%=p;
	}
	return ans;
}

线性算法

用于求一连串数字对于一个 m o d    p \mod p modp的逆元只能用这个方法。其它的方法都要比打表慢一节。此处不做推导,直接给出结论。

a[i] = - (p/i) * a[p%i];//p为模数
a[i] = (a[i] % p + p)%p;

完整代码:

#include<iostream>
using namespace std;
typedef long long ll;
ll x,y,n,f[3000010];
int main(){
	ll a,b,p,n,i;
	cin >>n >> p;
	f[1] = 1;
	for(i = 2;i<=n;++i){
		f[i] = -(p/i)*f[p%i];
		f[i] = (f[i]%p+p)%p;
	}
	for(i = 1;i<=n;++i) cout<<f[i]<<'\n';//1~n的逆元
	return 0;
}

通常来说,第二种快速幂的计算逆元的方法最为常见。逆元在组合数求解,分数取余上使用较多。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

registor11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值