2022-2028全球硬胶囊行业调研及趋势分析报告

据恒州诚思调研统计,2021年全球硬胶囊市场规模约 亿元,2017-2021年年复合增长率CAGR约为%,预计未来将持续保持平稳增长的态势,到2028年市场规模将接近 亿元,未来六年CAGR为 %。
本文调研和分析全球硬胶囊发展现状及未来趋势,核心内容如下:
(1)全球市场总体规模,分别按销量和按收入进行了统计分析,历史数据2017-2021年,预测数据2022至2028年。
(2)全球市场竞争格局,全球范围内主要生产商硬胶囊销量、收入、价格及市场份额,数据2017-2021年。
(3)中国市场竞争格局,中国主要生产商硬胶囊销量、收入、价格及市场份额,数据2017-2021年,包括国际企业及中国本土企业。
(4)全球其他重点国家及地区硬胶囊市场竞争格局,如美国、欧洲、日本、韩国、东南亚和印度等核心参与者及其2021年份额。
(5)按产品类型和应用拆分,分析全球与核心国家/地区细分市场规模。
(6)全球硬胶囊核心生产地区及其产量、产能。
(7)硬胶囊行业产业链上游、中游及下游分析。
从核心市场看,中国硬胶囊市场占据全球约 %的市场份额,为全球最主要的消费市场之一,且增速高于全球。2021年市场规模约 亿元,2017-2021年年复合增长率约为 %。随着国内企业产品开发速度加快,随着新技术和产业政策的双轮驱动,未来中国硬胶囊市场将迎来发展机遇,预计到2028年中国硬胶囊市场将增长至 亿元,2022-2028年年复合增长率约为 %。2021年美国市场规模为 亿元,同期欧洲为 亿元,预计未来六年,这两地区CAGR分别为 %和 %。
从产品类型方面来看,按收入计, 2021年猪市场份额为 %,预计2028年份额将达到 %。同时就应用来看,制药在2028年份额大约是 %,未来几年CAGR大约为 %。
全球市场主要硬胶囊参与者包括Capsugel、Suheung、Acg Worldwide、Bright Pharmacaps和Capscanada等,按收入计,2021年全球前3大生产商占有大约 %的市场份额。
本文重点关注如下国家或地区:
    北美(美国和加拿大)
    欧洲(德国、英国、法国、意大利和其他欧洲国家)
    亚太(中国、日本、韩国、中国台湾地区、东南亚、印度等)
    拉美(墨西哥和巴西等)
    中东及非洲地区(土耳其和沙特等)
按产品类型拆分,包含:
    猪
    牛
    骨粉
按应用拆分,包含:
    制药
    营养品
    化妆品
全球范围内硬胶囊主要厂商:
    Capsugel
    Suheung
    Acg Worldwide
    Bright Pharmacaps
    Capscanada
    Medi-Caps
    Qualicaps
    Roxlor
    Snail Pharma Industry
    Sunil Healthcare

正文目录

1 市场综述
    1.1 硬胶囊定义及分类
    1.2 全球硬胶囊行业市场规模及预测
        1.2.1 按收入计,2017-2028年全球硬胶囊行业市场规模
        1.2.2 按销量计,2017-2028年全球硬胶囊行业市场规模
        1.2.3 2017-2028年全球硬胶囊价格趋势
    1.3 中国硬胶囊行业市场规模及预测
        1.3.1 按收入计,2017-2028年中国硬胶囊行业市场规模
        1.3.2 按销量计,2017-2028年中国硬胶囊行业市场规模
        1.3.3 2017-2028年中国硬胶囊价格趋势
    1.4 中国在全球市场的地位分析
        1.4.1 按收入计,2017-2028年中国在全球硬胶囊市场的占比
        1.4.2 按销量计,2017-2028年中国在全球硬胶囊市场的占比
        1.4.3 2017-2028年中国与全球硬胶囊市场规模增速对比
    1.5 行业发展机遇、挑战、趋势及政策分析
        1.5.1 硬胶囊行业驱动因素及发展机遇分析
        1.5.2 硬胶囊行业阻碍因素及面临的挑战分析
        1.5.3 硬胶囊行业发展趋势分析
        1.5.4 中国市场相关行业政策分析
2 全球硬胶囊行业竞争格局
    2.1 按硬胶囊收入计,2017-2022年全球主要厂商市场份额
    2.2 按硬胶囊销量计,2017-2022年全球主要厂商市场份额
    2.3 硬胶囊价格对比,2017-2022年全球主要厂商价格
    2.4 全球第一梯队、第二梯队和第三梯队,三类硬胶囊市场参与者分析
    2.5 全球硬胶囊行业集中度分析
    2.6 全球硬胶囊行业企业并购情况
    2.7 全球硬胶囊行业主要厂商产品列举
3 中国市场硬胶囊行业竞争格局
    3.1 按硬胶囊收入计,2017-2022年中国市场主要厂商市场份额
    3.2 按硬胶囊销量计,2017-2022年中国市场主要厂商市场份额
    3.3 中国市场硬胶囊参与者份额:第一梯队、第二梯队、第三梯队
    3.4 2017-2022年中国市场硬胶囊进口与国产厂商份额对比
    3.5 2021年中国本土厂商硬胶囊内销与外销占比
    3.6 中国市场进出口分析
        3.6.1 2017-2028年中国市场硬胶囊产量、销量、进口和出口量
        3.6.2 中国市场硬胶囊进出口贸易趋势
        3.6.3 中国市场硬胶囊主要进口来源
        3.6.4 中国市场硬胶囊中国市场主要出口目的地
4 全球主要地区产能及产量分析
    4.1 2017-2028年全球硬胶囊行业总产能、产量及产能利用率
    4.2 全球硬胶囊行业主要生产商总部及产地分布
    4.3 全球主要生产商近几年硬胶囊产能变化及未来规划
    4.4 全球主要地区硬胶囊产能分析
    4.5 全球硬胶囊产地分布及主要生产地区产量分析
        4.5.1 全球主要地区硬胶囊产量及未来增速预测,2017 VS 2021 VS 2028
        4.5.2 2017-2028年全球主要生产地区及硬胶囊产量
        4.5.3 2017-2028年全球主要生产地区及硬胶囊产量份额
5 行业产业链分析
    5.1 硬胶囊行业产业链
    5.2 上游分析
        5.2.1 硬胶囊核心原料
        5.2.2 硬胶囊原料供应商
    5.3 中游分析
    5.4 下游分析
    5.5 硬胶囊生产方式
    5.6 硬胶囊行业采购模式
    5.7 硬胶囊行业销售模式及销售渠道
        5.7.1 硬胶囊销售渠道
        5.7.2 硬胶囊代表性经销商
6 按产品类型拆分,市场规模分析

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
以下是一个简单的 PyTorch 胶囊网络(Capsule Network)的实现代码,带有注释,可以帮助您了解其工作原理。这个代码基于 Hinton 的论文《Dynamic Routing Between Capsules》。 ```python import torch import torch.nn.functional as F class CapsuleLayer(torch.nn.Module): """ 胶囊层 """ def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels): super(CapsuleLayer, self).__init__() self.num_route_nodes = num_route_nodes self.num_capsules = num_capsules self.in_channels = in_channels self.out_channels = out_channels # 胶囊的权重矩阵 self.W = torch.nn.Parameter(torch.randn(num_capsules, num_route_nodes, in_channels, out_channels)) def forward(self, x): # x的shape: [batch_size, num_route_nodes, in_channels] batch_size = x.size(0) # x的形状需要扩展为 [batch_size, num_route_nodes, 1, in_channels, 1] x = torch.stack([x] * self.num_capsules, dim=2).unsqueeze(4) # 复制W以匹配x的shape W = torch.cat([self.W] * batch_size, dim=0) # 胶囊的预测值 u_hat = torch.matmul(W, x) # 初始化b_ij,shape为 [batch_size, num_capsules, num_route_nodes, 1, 1] b_ij = torch.zeros(1, self.num_capsules, self.num_route_nodes, 1, 1) # 迭代动态路由 num_iterations = 3 for iteration in range(num_iterations): # 计算c_ij c_ij = F.softmax(b_ij, dim=1) # 计算s_j = sum(c_ij*u_hat) s_j = (c_ij * u_hat).sum(dim=2, keepdim=True) # 计算v_j v_j = self.squash(s_j) # 更新b_ij if iteration != num_iterations - 1: a_ij = (u_hat * v_j).sum(dim=3, keepdim=True) b_ij = b_ij + a_ij # 返回胶囊的输出 return v_j.squeeze(3) def squash(self, s): """ 胶囊的激活函数 """ squared_norm = (s ** 2).sum(dim=3, keepdim=True) scale = squared_norm / (1 + squared_norm) return scale * s / torch.sqrt(squared_norm) class CapsuleNet(torch.nn.Module): """ 胶囊网络 """ def __init__(self): super(CapsuleNet, self).__init__() self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1) self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32) self.digit_capsules = CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=8, out_channels=16) self.decoder = torch.nn.Sequential( torch.nn.Linear(16 * 10, 512), torch.nn.ReLU(inplace=True), torch.nn.Linear(512, 1024), torch.nn.ReLU(inplace=True), torch.nn.Linear(1024, 784), torch.nn.Sigmoid() ) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.primary_capsules(x) x = self.digit_capsules(x) x = x.view(x.size(0), -1) classes = (x ** 2).sum(dim=1) ** 0.5 classes = F.softmax(classes, dim=0) _, max_length_indices = classes.max(dim=1) masked = torch.autograd.Variable(torch.sparse.torch.eye(10)) if torch.cuda.is_available(): masked = masked.cuda() masked = masked.index_select(dim=0, index=max_length_indices.squeeze(1).data) reconstructions = self.decoder((x * masked[:, :, None]).view(x.size(0), -1)) return classes, reconstructions ``` 这个代码实现了一个简单的 Capsule Network,包括一个卷积层、两个胶囊层和一个解码器。在前向传播过程中,输入首先通过卷积层和激活函数进行处理,然后通过两个胶囊层,其中第一个胶囊层生成8个胶囊,第二个胶囊层生成10个胶囊,每个胶囊的输出都是一个16维向量。最后,输出通过解码器进行重构,并返回类别概率和重构结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恒州诚思-小思

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值