时间序列学习笔记(二)
差分算子和后移算子
差分算子
当遇到非平稳时间序列时,为了方便采用数学方法进行处理,我们通常会考虑把它变成平稳时间序列,这时我们常用的方法是差分变换。
对于序列{X1,…,XN},其一阶(向后)差分定义为{y1,…,yN},这里 y t = ∇ x t ≡ x t − x t − 1 y_t=\nabla x_t\equiv x_t-x_{t-1} yt=∇xt≡xt−xt−1
二阶差分定义为
∇ 2 x t = ∇ ( ∇ x t ) = ∇ x t − ∇ x t − 1 = ( x t − x t − 1 ) − ( x t − 1 − x t − 2 ) = x t − 2 x t − 1 + x t − 2 \nabla^2x_t=\nabla(\nabla x_t)=\nabla x_t-\nabla x_{t-1}=(x_t-x_{t-1})-(x_{t-1}-x_{t-2})=x_t-2 x_{t-1}+x_{t-2} ∇2xt=∇(∇xt)=∇xt−∇xt−1=(xt−xt−1)−(xt−1−xt−2)=