时间序列学习笔记(二)

本文是时间序列学习笔记的第二部分,主要讲解了差分算子和后移算子的概念及其应用。差分算子用于将非平稳时间序列转化为平稳序列,如一阶差分、二阶差分和多期滞后差分。后移算子定义为B,它与差分算子的关系为∇≡1−B,并具有多个重要性质。此外,还介绍了白噪声的定义,包括其统计特性,如独立同分布、零均值、有限方差,以及二阶平稳性和自相关函数。最后,展示了高斯白噪声的模拟序列及其样本自相关函数图。
摘要由CSDN通过智能技术生成

时间序列学习笔记(二)

差分算子和后移算子

差分算子

当遇到非平稳时间序列时,为了方便采用数学方法进行处理,我们通常会考虑把它变成平稳时间序列,这时我们常用的方法是差分变换。
对于序列{X1,…,XN},其一阶(向后)差分定义为{y1,…,yN},这里 y t = ∇ x t ≡ x t − x t − 1 y_t=\nabla x_t\equiv x_t-x_{t-1} yt=xtxtxt1
二阶差分定义为
∇ 2 x t = ∇ ( ∇ x t ) = ∇ x t − ∇ x t − 1 = ( x t − x t − 1 ) − ( x t − 1 − x t − 2 ) = x t − 2 x t − 1 + x t − 2 \nabla^2x_t=\nabla(\nabla x_t)=\nabla x_t-\nabla x_{t-1}=(x_t-x_{t-1})-(x_{t-1}-x_{t-2})=x_t-2 x_{t-1}+x_{t-2} 2xt=(xt)=xtxt1=(xtxt1)(xt1xt2)=

时间序列分析是一种统计方法,用于分析时间序列数据,即按时间顺序排列的数据点。时间序列分析在经济学、金融学、工程学等多个领域有广泛应用。以下是基于SAS进行时间序列分析的一些学习笔记: ### 1. 时间序列数据的特征 时间序列数据通常具有以下特征: - **趋势(Trend)**:数据长期上升或下降的趋势。 - **季节性(Seasonality)**:数据在固定周期内的重复模式。 - **周期(Cyclicity)**:数据在不固定周期内的波动。 - **随机性(Randomness)**:数据中的随机波动。 ### 2. SAS中的时间序列分析工具 SAS提供了多种工具和过程用于时间序列分析,主要包括: - **PROC TIMESERIES**:用于生成时间序列数据的基本统计量和图表。 - **PROC ARIMA**:用于拟合自回归积分滑动平均模型(ARIMA)。 - **PROC ESM**:用于拟合指数平滑模型。 - **PROC UCM**:用于拟合未观测成分模型。 ### 3. 时间序列分析的基本步骤 1. **数据预处理**:包括数据清洗、缺失值处理和异常值检测。 2. **描述性分析**:生成时间序列图、计算基本统计量。 3. **模型选择**:根据数据特征选择合适的模型,如ARIMA、指数平滑等。 4. **模型拟合**:使用SAS过程拟合模型。 5. **模型诊断**:检查模型的拟合效果,诊断残差。 6. **预测**:使用拟合好的模型进行预测。 ### 4. 示例代码 以下是一个简单的示例代码,展示如何使用PROC ARIMA进行时间序列分析: ```sas /* 数据导入 */ data mydata; infile 'path_to_your_data'; input time series; run; /* 描述性分析 */ proc timeseries data=mydata; var series; id time interval=day; run; /* 模型拟合 */ proc arima data=mydata; identify var=series; estimate p=1 q=1; forecast lead=10 out=forecast; run; /* 结果展示 */ proc sgplot data=forecast; series x=time y=series / group=series; series x=time y=FORECAST / lineattrs=(color=red); series x=time y=L95 / lineattrs=(color=green); series x=time y=U95 / lineattrs=(color=green); run; ``` ### 5. 注意事项 - **数据质量**:时间序列分析对数据质量要求较高,需确保数据的准确性和完整性。 - **模型选择**:选择合适的模型是关键,需根据数据特征和业务需求进行选择。 - **模型诊断**:模型诊断是确保预测准确性的重要步骤,需仔细检查残差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值