时间序列分析
上一章运用矩阵代数对线性差分方程进行了求解,事实上运用时间序列算子求解差分方程更加方便。
滞后算子
2.1 时间序列算子
2.1.1 什么是时间序列算子
我们将函数y = f (x, w) 视为 输入数字x , w ,输出一个新数字y 的操作。
那么可以将时间序列算子 视为 输入时间序列
x
t
,
w
t
{x_t}, {w_t}
xt,wt ,输出一个新的时间序列
y
t
{y_t}
yt的操作。
2.1.2 时间序列算子的分类及运算
- 加法算子:加法运算
- 乘法算子:交换律、结合律、分配律
- 滞后算子:表示滞后一期的运算如 y t = L x t = x t − 1 y_t=Lx_{t}=x_{t-1} yt=Lxt=xt−1
2.1.3 滞后算子多项式:一阶差分方程
上一章提到的差分方程都可以写成滞后算子的形式,并且运用因式分解进行求解。
- 一阶差分方程: y t = ϕ y t − 1 + w t y_t=\phi y_{t-1}+w_t yt=ϕyt−1+wt
- 滞后算子形式: y t = ϕ L y t + w t y_t = \phi Ly_t+w_t yt=ϕLyt+wt 等价于 ( 1 − ϕ L ) y t = w t (1- \phi L)y_t = w_t (1−ϕL)yt=wt
- 两边同乘 ( 1 + ϕ L + ϕ 2 L 2 + … + ϕ t L t ) (1+\phi L+\phi^2 L^2+…+\phi^t L^t) (1+ϕL+ϕ2L2+…+ϕtLt) 可得:
( 1 − ϕ t + 1 L t + 1 ) y t = ( 1 + ϕ L + ϕ 2 L 2 + … + ϕ t L t ) w t (1-\phi^{t+1} L^{t+1})y_t=(1+\phi L+\phi^2 L^2+…+\phi^t L^t)w_t (1−ϕt+1Lt+1)yt=(1+ϕL+ϕ2L2+…+ϕtLt)wt
-
一阶差分方程的解为:
y t = ϕ t + 1 y − 1 + ( 1 + ϕ L + ϕ 2 L 2 + … + ϕ t L t ) w t y_t=\phi^{t+1}y_{-1}+(1+\phi L+\phi^2 L^2+…+\phi^t L^t)w_t yt=ϕt+1y−1+(1+ϕL+ϕ2L2+…+ϕtLt)wt
y t = ( 1 + ϕ L + ϕ 2 L 2 + … + ϕ t L t + … ) w t y_t=(1+\phi L+\phi^2 L^2+…+\phi^t L^t+…)w_t yt=(1+ϕL+ϕ2L2+…+ϕtLt+…)wt
注:如果序列是有限的,当
ϕ
<
1
\phi <1
ϕ<1时,我们考虑在原有界序列上施加一个算子
(
1
+
ϕ
L
+
ϕ
2
L
2
+
…
+
ϕ
t
L
t
)
(1+\phi L+\phi^2 L^2+…+\phi^t L^t)
(1+ϕL+ϕ2L2+…+ϕtLt)
作为
(
1
−
ϕ
L
)
−
1
=
lim
t
→
∞
(
1
+
ϕ
L
+
ϕ
2
L
2
+
…
+
ϕ
t
L
t
)
(1-\phi L)^ {-1}=\lim_{t\to\infty}(1+\phi L+\phi^2 L^2+…+\phi^t L^t)
(1−ϕL)−1=limt→∞(1+ϕL+ϕ2L2+…+ϕtLt)的 估计值。
2.2 P阶差分方程的另一种解法
2.2.1 p阶滞后算子多项式
- p阶差分方程: y t = ϕ 1 y t − 1 + ϕ 2 y t − 2 + ϕ 3 y t − 3 + … ϕ p y t − p + w t y_t=\phi_1y_{t-1}+\phi_2y_{t-2}+\phi_3y_{t-3}+…\phi_py_{t-p}+w_t yt=ϕ1yt−1+ϕ2yt−2+ϕ3yt−3+…ϕpyt−p+wt
- 滞后算子形式: y t = ϕ L y t + ϕ 2 L 2 y t + ϕ 3 L 3 y t + … ϕ p L p y t + w t y_t = \phi Ly_t+\phi_2L^2y_{t}+\phi_3L^3y_{t}+…\phi_pL^py_{t}+w_t yt=ϕLyt+ϕ2L2yt+ϕ3L3yt+…ϕpLpyt+wt
- 滞后算子多项式 ( 1 − ϕ L − ϕ 2 L 2 − … − ϕ p L p ) = 0 (1- \phi L-\phi^2 L^2-…-\phi^pL^p)=0 (1−ϕL−ϕ2L2−…−ϕpLp)=0
2.2.2 特征多项式与滞后算子多项式
-
因式分解滞后算子多项式
令将L替换为标量z,因为L不是一个真正的数字。
( 1 − ϕ z − ϕ 2 z 2 − … − ϕ p z p ) = ( 1 − λ 1 z ) ( 1 − λ 2 z ) … ( 1 − λ p z ) (1- \phi z-\phi^2 z^2-…-\phi^pz^p)=(1-\lambda_1z)(1-\lambda_2z)…(1-\lambda_pz) (1−ϕz−ϕ2z2−…−ϕpzp)=(1−λ1z)(1−λ2z)…(1−λpz) 得到z的p个解。
-
令 z = λ − 1 z=\lambda^{-1} z=λ−1 即可得到上一章的特征多项式
λ p − ϕ 1 λ p − 1 − ϕ 2 λ p − 2 − … … − ϕ p − 1 λ − ϕ p = 0 \lambda^p-\phi_1\lambda^{p-1}-\phi_2\lambda^{p-2}-……-\phi_{p-1}\lambda-\phi_{p}=0 λp−ϕ1λp−1−ϕ2λp−2−……−ϕp−1λ−ϕp=0
-
两个多项式是等价的,解互为倒数,平稳时间序列满足:
z>1, λ<1
2.2.3 p阶差分方程求解
-
滞后算子形式:
( 1 − ϕ L − ϕ 2 L 2 − … − ϕ p L p ) y t = w t (1- \phi L-\phi^2 L^2-…-\phi^pL^p)y_t=w_t (1−ϕL−ϕ2L2−…−ϕpLp)yt=wt
-
因式分解
( 1 − λ 1 L ) ( 1 − λ 2 L ) … ( 1 − λ p L ) y t = w t (1-\lambda_1L)(1-\lambda_2L)…(1-\lambda_pL)y_t=w_t (1−λ1L)(1−λ2L)…(1−λpL)yt=wt
-
同乘p个 ( 1 − ϕ L ) − 1 (1-\phi L)^ {-1} (1−ϕL)−1
-
结果同上一章矩阵代数解法。