- 博客(8)
- 收藏
- 关注
原创 第三章:概括力理论(基本概念、发展)
概括力理论(generalizability theory,简写为GT),又称为概化理论,也有人称为拓广理论。概括力理论将因素试验设计及其分析、方差分量模型等统计工具应用到教育与心理测量学,对经典测验理论(CTT)中的一个重要概念(信度)进行推广,即结合测量的情境关系对CTT给出的笼统的误差进行探查和分解,辨明误差的不同来源,并且在一定范围内变动测量的情境关系,以考察这种变动引起的误差的相对变化,从而达到对误差方差进行控制,提高测验”信度“的目的。概括力理论使人们能站到新的理论高度,更加有力又有预控性地去改
2022-06-23 20:35:08
891
原创 第二章:真分数理论(信度系数的估计)(三)
信度系数的估计1、平行测验的获得(重测法、劈半法)2、单一形式测验信度(劈半相关法、领域抽样理论)3、信度系数的应用(测验误差的来源、估计评分者信度系数、经典信度理论的局限、差异分数信度系数)...
2022-06-23 20:33:37
919
原创 第三章:K近邻法(主要思想、算法、三要素、构造kd树)
K近邻法1、直观理解、主要思想、算法、模型、2、k近邻法的三要素(距离度量、k值得选择、分类决策规则)3、构造kd树(什么是kd树、构造kd树、搜索kd树)
2022-06-23 20:05:20
2513
原创 第一章:监督学习(分类问题、标注问题、回归问题)
根据输入和输出变量的不同类型可以对监督学习进行分类当输出变量为有限个离散变量时分类问题的评价指标分类准确率: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。rtest =1N′∑i′=1N′I(yi′=f^(xi′))r_{\text {test }}=\frac{1}{N^{\prime}} \sum_{i^{\prime}=1}^{N^{\prime}} I\left(y_{i^{\prime}}=\hat{f}\left(x_{i^{\prime}}\right)\right)r
2022-06-23 19:59:56
493
原创 模型评估与选择:经验误差与过拟合、评估方法(留出法、交叉验证法、自助法)
误差(误差期望):学习器的实际预测输出与样本的真实输出之间的差异称为“误差”。学习器在训练集上的误差称为“训练误差”、“经验误差”;在新样本上的误差称为“泛化误差”过拟合与欠拟合:过拟合:学习器把训练样本学习得太好,得到的经验误差很小,这时,很可能已经把训练样本自身的一些特点当做了所有潜在样本都会具有的一般性质,这样会导致泛化性能下降,这种现象称为“过拟合”。欠拟合:指对训练样本的一般性质尚未学好。模型选择:学习算法、参数配置的不同会产生不同的模型理想的解决方案是对候选模型的泛化误差进行评估,然后选择泛化误
2022-06-23 19:57:51
687
原创 第四章:朴素贝叶斯法(条件概率、贝叶斯定理、朴素贝叶斯)
朴素贝叶斯法1、贝叶斯思维2、条件概率3、贝叶斯定理:逆概率思维4、朴素贝叶斯(基本方法)
2022-06-04 10:14:47
242
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅