第二章:真分数理论(真分数模型:概念、假设、平行测验)

真分数理论是心理和教育测量学的基础,即使在现代测量理论发展之后,仍具有深远影响。该理论提出真分数模型,其中真分数是观察分数与误差分数之差,是测量对象的真实值。理论假设包括真分数不变、误差完全随机且独立,以及观察分数是真分数和误差的和。平行测验的概念是理论框架中的关键,指能等同程度测量同一特质的不同测验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第二章 真分数理论

  • 真分数理论 是心理和教育测量学发展历史中最早实现数学形式化的测量理论。
  • 从19世纪末开始酝酿、兴起 ⟶ \longrightarrow 20世纪30年代逐渐趋于成熟。
  • 当前,尽管概括力理论与项目反应理论等现代测量理论实现了多方位的突破,开辟了测量理论发展的新阶段,但经典的真分数理论仍然在测验实际工作中保留着强有力的影响,发挥着重要的指导作用。他依然是影响最为广泛的一种测量理论。
  • 真分数理论提出了真分数模型,并据此展开其理论体系,它的核心内容就是经典的信度理论。同时,它对测验编制和效度验证也提出了许多策略和技术。

第一节 真分数模型

真分数概念
  • 测量就是给研究对象指定值。

  • 观测值(观察分数): 这种在测量工具上直接得到的值,就叫观测值,在心理与教育测量中又叫观察分数。

  • 真分数: 被测对象在测量工具所测特性上的真实值,并不就是直接得到的观测值,他是观察分数跟误差分数的一个差值。这种不能直接观察测量到的真值,在心理与教育测量场合就是被试所具有的真分数。

  • 如果进行无限多次测量,得到的观察分数的平均数或者说期望值,就会使被观察对象的真值。即:

    若有测量 g g g,对特定被试 a a a多次施测,其真分数记为 τ g a τ_{ga} τga ,而观察分数记为 X g a X_{ga} Xga ,则
    τ g a ≡ ξ X g a τ_{ga} ≡ ξX_{ga} τgaξXga
    这里,ξ是去期望的符号。式(1)把真分数定义为观察分数的期望值。 ⟶ \longrightarrow 这里人们采用的式概率模型。这是一种广为人们接受的、构成经典的真分数理论基石的重要观念。

  • 包含在观察分数中的误差有两种:随机误差、系统误差

    随机误差:它是由大量原因不明、作用方向相互对立、影响分量都不大而彼此类似的因素所造成的;(本书所考察的误差专指随机误差)

    系统误差:它是由少数作用效果显著、作用方向一致的特定因素所造成的。比如被试的成熟、所受教育影响等。

真分数理论的假设
  • 经典的真分数理论提出了三个方面的基本假设,它的信度理论等就是由这些基本假设演绎展开而构建起来的。他们是经典真分数理论大厦的逻辑前提。
  1. 假设一,在所讨论的问题范围内,真分数不变,即个体具有恒定的特质,其分量一定,取值是常数。

    ​ 在考虑测量理论框架的逻辑前提时,真分数究竟指的是什么无所谓,唯一要明确的,就是真分数所指代的被试特质必须具有某种程度的稳定性。至少在我们讨论问题的内容范围内、所经历的时间过程中,其值应该是不变的,保持恒定。否则,真分数理论就无法展开。

    ​ 从这一假设看来,心理和教育测量的真分数理论更多的是借鉴物理测量的经验。

    从较为粗放的角度来看,心理特质也可视为结构固定、取值恒常的。这是真分数理论能为人们接受的客观基础。

  2. 假设二,误差是完全随机的。这有两层意思:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值