第二节 经典的信度理论
信度的概念
-
测验信度 :关于测验控制误差、抗干扰能力的量度,或者说对测验结果准确、可靠地传达真值信息能力的量度,就是测验信度。
-
按照真分数理论的数学模型,可以从三个角度来定义测验的信度:
-
把信度定义为观察分数跟真分数间联系的强度。 —只有理论价值
- 观察分数跟真分数间的联系越强,观察分数越有资格来代表真分数。
- 这种联系可定量地用观察分数与真分数的相关来刻画( ρ X T ρ_{XT} ρXT),信度指数 。
这种定义直接体现了真分数模型X = T+ E的内在实质。
-
将信度定义为大批平行测验在被试个体上所得误差分数的标准误。 —只有理论价值
-
对误差分数的方差 σ E 2 σ^2_E σE2 求算术根,得到测量标准误 σ E σ_E σE 。利用这种测量标准误 σ E σ_E σE ,可以用被试个体实际得到的观测分数为中点,估计其真分数值,建立起该被试真分数的置信区间。
测量标准误越小,置信区间的半长就越短,估计就越准确。
-
这一定义抓住了测量误差统计学上的含义。
-
-
将信度定义为两平行测验上观察分数间的相关。 —现实可行
即:用一个平行测验上某被试的观察分数,去正确推论另一平行测验上该被试观察分数的能力,用这种能力值的大小来定义测验的信度。
- 两平行测验间观察分数的相关系数就被称为信度系数。
-
-
真分数理论通过深入的统计数学分析,把三个定义相互联系、贯穿统一起来,从而使人们能在真分数理论框架内,获得对信度的透彻、完整的理解。
信度指数和系数的推导
-
信度指数就是观察分数跟真分数的相关。相关分析都要利用到两变量的协方差概念。
若用* x , y x,y x,y* 来代表变量X和Y的离均差,则变量X和Y的协方差就是
1 n ∑ x y = ρ X Y σ X σ Y \frac{1}{n} \sum xy = ρ_{XY}σ_Xσ_Y n1∑xy=ρXYσXσY
变量X和Y的相关系数就是
ρ X Y = ∑ x y n σ X σ Y ρ_{XY} = \frac{\sum xy}{nσ_Xσ_Y} ρXY=nσXσY∑xy
作为观察分数X与真分数T的相关系数的信度指数,就是
ρ X Y = ∑ x τ n σ X σ T ρ_{XY} = \frac{\sum xτ}{nσ_Xσ_T} ρXY=nσXσT∑xτ
字母τ代表真分数的离均差。因为 x = τ + ε x = τ + ε x=τ+ε ,这里 ε ε ε 代表误差分数的离均差。(13)可改写为:
ρ X Y = ∑ x τ n σ X σ T = ∑ ( τ + ε ) τ n σ X σ T = ∑ τ 2 n + ∑ ε τ n σ X σ T ρ_{XY} = \frac{\sum xτ}{nσ_Xσ_T} = \frac{\sum(τ+ε)τ}{nσ_Xσ_T} = \frac{\frac{\sumτ^2}{n} + \frac{\sumετ}{n}}{σ_Xσ_T} ρXY=nσXσT