第二章:真分数理论(经典的信度理论)(二)

本文详细介绍了经典的信度理论,包括测验信度的定义、信度指数和系数的推导过程。信度是衡量测验结果准确性和可靠性的关键指标,可以从观察分数与真分数的相关性、误差分数的标准误和两平行测验观察分数的相关性三个方面定义。通过统计分析,信度指数被证明等于真分数标准差与观察分数标准差的比,而测量标准误则与信度系数密切相关。
摘要由CSDN通过智能技术生成

第二节 经典的信度理论

信度的概念
  • 测验信度 :关于测验控制误差、抗干扰能力的量度,或者说对测验结果准确、可靠地传达真值信息能力的量度,就是测验信度。

  • 按照真分数理论的数学模型,可以从三个角度来定义测验的信度:

    1. 把信度定义为观察分数跟真分数间联系的强度。 —只有理论价值

      • 观察分数跟真分数间的联系越强,观察分数越有资格来代表真分数。
      • 这种联系可定量地用观察分数与真分数的相关来刻画( ρ X T ρ_{XT} ρXT),信度指数

      这种定义直接体现了真分数模型X = T+ E的内在实质。

    2. 将信度定义为大批平行测验在被试个体上所得误差分数的标准误。 —只有理论价值

      • 对误差分数的方差 σ E 2 σ^2_E σE2 求算术根,得到测量标准误 σ E σ_E σE 。利用这种测量标准误 σ E σ_E σE ,可以用被试个体实际得到的观测分数为中点,估计其真分数值,建立起该被试真分数的置信区间。

        测量标准误越小,置信区间的半长就越短,估计就越准确。

      • 这一定义抓住了测量误差统计学上的含义。

    3. 将信度定义为两平行测验上观察分数间的相关。 —现实可行

      即:用一个平行测验上某被试的观察分数,去正确推论另一平行测验上该被试观察分数的能力,用这种能力值的大小来定义测验的信度。

      • 两平行测验间观察分数的相关系数就被称为信度系数
  • 真分数理论通过深入的统计数学分析,把三个定义相互联系、贯穿统一起来,从而使人们能在真分数理论框架内,获得对信度的透彻、完整的理解。

信度指数和系数的推导
  • 信度指数就是观察分数跟真分数的相关。相关分析都要利用到两变量的协方差概念。

    若用* x , y x,y x,y* 来代表变量X和Y的离均差,则变量X和Y的协方差就是
    1 n ∑ x y = ρ X Y σ X σ Y \frac{1}{n} \sum xy = ρ_{XY}σ_Xσ_Y n1xy=ρXYσXσY
    变量X和Y的相关系数就是
    ρ X Y = ∑ x y n σ X σ Y ρ_{XY} = \frac{\sum xy}{nσ_Xσ_Y} ρXY=nσXσYxy
    作为观察分数X与真分数T的相关系数的信度指数,就是
    ρ X Y = ∑ x τ n σ X σ T ρ_{XY} = \frac{\sum xτ}{nσ_Xσ_T} ρXY=nσXσTxτ
    字母τ代表真分数的离均差。因为 x = τ + ε x = τ + ε x=τ+ε ,这里 ε ε ε 代表误差分数的离均差。(13)可改写为:
    ρ X Y = ∑ x τ n σ X σ T = ∑ ( τ + ε ) τ n σ X σ T = ∑ τ 2 n + ∑ ε τ n σ X σ T ρ_{XY} = \frac{\sum xτ}{nσ_Xσ_T} = \frac{\sum(τ+ε)τ}{nσ_Xσ_T} = \frac{\frac{\sumτ^2}{n} + \frac{\sumετ}{n}}{σ_Xσ_T} ρXY=nσXσT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值