荷兰光量子公司QuiX推出“即插即用”的光量子处理器

荷兰光量子计算公司QuiXQuantum推出了一款新的光量子处理器,该处理器拥有20个量子模式,性能较上一代提升近两倍。QuiX基于氮化硅波导技术的TriPleX平台,致力于光量子计算的创新,其产品已应用于机器学习和量子模拟。新款处理器在光损耗和量子模式数量上表现出色,巩固了QuiX在光量子计算硬件市场的领先地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Quix 20 Qumode 光子量子处理器芯片(图片来源:Quix)

 

近日,荷兰光量子计算公司QuiX Quantum宣布推出一款最新的光量子处理器,性能是其上一代处理器的近2倍。

 

该处理器由QuiX位于荷兰恩斯赫德的工厂开发。据QuiX官网发布,新的光量子处理器具有创纪录的20个量子模式。在光量子处理器中,QuiX是以量子模式(Qumodes)为单位而非量子比特。QuiX解释到,与量子比特不同,量子模式连续可变,同时从理论上来讲,量子模式相较于量子比特质量更高。

 

在光量子处理器中,光量子的数量和质量是非常重要的两个条件。QuiX表示,数量是指处理器可以支持的量子模式的数量,质量则是指穿过处理器的光损耗越低越好。 Quix的最新处理器具有极低光损耗和较多量子模式数量。同时,Quix还公布了其最新处理器与上一代处理器的关键性能比较结果:

 

QuiX成立于2019年,基于专有的氮化硅波导技术TriPleX实现量子技术解决方案,致力于构建用于机器学习和量子模拟应用的专用光量子计算机。2020年12月,Quix推出了12量子模式的光量子处理器。自2021年以来,QuiX为欧洲的多个客户提供量子处理器,目前QuiX已售出了五台12量子模式的光量子处理器。

 

QuiX认为,新一代光量子处理器的推出巩固了QuiX作为光量子计算硬件全球市场领导者的地位,QuiX将凭借出色的产品性能以及成熟的商业模式在行业中脱颖而出。根据QuiX透露,其即插即用系统,已兼容包括所有光子源在内的众多光量子硬件,以及目前市场上几乎所有的探测器。现在,QuiX的产品已成为欧洲光量子计算的一种实际标准,包括在法国、 德国、 英国和匈牙利的量子生态系统中。 

QuiX Quantum

成立于2019年,是特温特大学的衍生公司,专注于使用集成光子技术的量子计算,并探索光量子计算在机器学习、化学、密码学领域的应用。其目标是用高科技、可扩展、面向未来的即插即用集成光子解决方案继续颠覆量子计算。

 

原文链接:

https://www.quixquantum.com/news/quix-quantum-launches-new-quantum-photonic-processor

文:QuiX

编译:李每

编辑:慕一
注:本文编译自“ QuiX”,不代表量子前哨观点。

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值