机器学习学习笔记--如何在AWS上完成模型训练

如果你在本地无法完成模型训练,采用云主机完成是一个不错的选择。这里推荐 AWS,也就是亚马逊云服务。你可以登陆 https://aws.amazon.com完成注册。然后新建一个 EC2 弹性云计算主机。

使用 AWS 的一个重要原因是它提供了许多优质的镜像,例如我选择的 ami-599a7721 社区镜像已经配置好了 Keras 的开发环境。除此之外,ami-638c1eo3镜像也是不错的选择。启动之后,就无需再自行配置环境。

AWS 大部分主机都在国外,对于访问 GitHub 等外网资源和一些外网服务有着天然优势。

实例类型方面,推荐选择g2.2xlarge。此款实例类型配置了1 个 NVIDIA GRID GPU (Kepler GK104) 以及来自 Intel Xeon E5-2670 的 8 个硬件超线程提供支持。对于本次训练的规模来讲,已经足够了。标准配置的 g2.2xlarge类型实例价格为 $0.65 (4.3 元人民币)每小时GPU 实例价格昂贵,按需使用完之后,务必注意要终止实例。

配置好实例之后,我们就可以开始训练模型了。g2.2xlarge 使用的 NVIDIA GRID GPU (Kepler GK104)拥有 4 GB 显存,配置一般,比较经济。为了保险起见,我们可以验证一下作为后端的 tensorflow 是否已经成功切换到到 GPU。

# -*- coding:utf8 -*-

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from keras.preprocessing import image
from keras.models import load_model, Sequential
from keras.applications.inception_v3 import preprocess_input

# 载入模型
model = load_model('inceptionv3-tl.model')


# 预测函数
def predict(model, img):
    img = img.resize((299, 299))
    # 提取特征
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    # 预测
    preds = model.predict(x)
    return preds[0]


# 绘制图像

def plot_preds(image, preds):
    plt.figure()
    plt.subplot(211)
    plt.imshow(image)
    plt.axis('off')

    plt.subplot(212)
    labels = ("cat", "dog")
    plt.barh([0, 1], preds, alpha=0.5)
    plt.yticks([0, 1], labels)
    plt.xlabel('Probability')
    plt.xlim(0, 1.01)
    plt.tight_layout()
    plt.show()


# 运行
if __name__ == "__main__":
    # 这里注意改到你放置测试图片的位置
    img = Image.open('dog.jpg')
    preds = predict(model, img)
    print(preds)
    plot_preds(img, preds)





评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值