视频生成:AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion

论文作者:Mingzhen Sun,Weining Wang,Gen Li,Jiawei Liu,Jiahui Sun,Wanquan Feng,Shanshan Lao,SiYu Zhou,Qian He,Jing Liu

作者单位:CAS;Bytedance Inc.;UCAS

论文链接:http://arxiv.org/abs/2503.07418v1

内容简介:

1)方向:视频生成

2)应用:视频生成

3)背景:现有的视频生成方法主要依赖于异步自回归模型或同步扩散模型。然而,异步自回归模型通常会在训练与推理阶段之间出现不一致,导致错误积累。而同步扩散模型则受到固定序列长度的限制,无法灵活地处理视频生成。

4)方法:为了解决这些问题,提出一种新的模型——自回归扩散(AR-Diffusion)。该模型结合了自回归模型和扩散模型的优势,支持灵活的异步视频生成。具体来说,在训练和推理过程中,采用扩散方法逐渐破坏视频帧,从而减少训练和推理阶段之间的差异。此外,受自回归生成的启发,模型对每帧的破坏步骤施加了非递减约束,确保早期帧比后续帧保持更清晰。结合时间因果注意力机制,该方法可以生成长度不固定的视频,同时保持时间上的一致性。模型还设计了两个专门的时间步调度器:FoPP调度器用于训练期间平衡时间步采样,AD调度器用于推理时支持灵活的时间步差异,支持同步和异步生成。

5)结果:通过大量实验验证,该方法在四个具有挑战性的基准测试中表现出色,取得了竞争力和最先进的结果,证明了其方法的优越性。

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值