【读懂论文4】YOLO系列重点说明

本文深入介绍了YOLO(You Only Look Once)目标检测算法,从基本原理到YOLOv2、YOLOv3、YOLOv4和YOLOv5的改进点。YOLO通过将目标检测问题转化为回归问题,实现了快速的目标检测。文章详细讨论了损失函数设计、批量标准化、锚框、多尺度训练等关键概念,并提到了在YOLO系列各个版本中的优化策略。
摘要由CSDN通过智能技术生成

概述

YOLO原本是一句英语中的常用口语“You Only Live Once”的缩写,意思是人只活一次别太顾忌太多。而在这篇论文中,作者引用这个并把"Live"改成"Look",表示这个方法是只看一次的一步(one-stage)方法。
相比于之前的以R-CNN为代表的二阶段法,YOLO这种一阶段的目标检测的显著特点就是快,超级快(extremely fast)。
下面将着重介绍YOLO的原理和后续几个版本的更新所在何处。

YOLO

论文地址:You Only Look Once: Unified, Real-Time Object Detection

原理

在这里插入图片描述
YOLO对整张图片直接进行处理。首先直接分割成S乘S个小方格(论文中是7乘7),然后每个小方格对应B个(论文中是两个,一个横的,一个竖的)边界框,边界框除了包含框的位置和大小信息之外还包含了置信度。置信度是由以这个小格为中心是否有对象(是就是1,否就是0)和与真实边界框的IoU相乘。再然后,每个小方格还包括了20个类别信息。
经过如此设计,YOLO就可以将目标检测问题直接转化为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值