卷积神经网络难点梳理

本文深入探讨卷积神经网络(CNN)的基本概念、原理及其在深度学习中的应用。从数学卷积到CNN中的卷积操作,揭示了如何通过卷积、池化和激活函数来提取图像特征。同时,简述了损失函数在训练过程中的角色以及梯度下降和反向传播的重要性。
摘要由CSDN通过智能技术生成

1 基本概念及原理

1.1 基本概念

概念名称 目的 操作 示意图
卷积(Convolution) 提取特征 将图像矩阵遍历乘以卷积核矩阵并输出 在这里插入图片描述
池化(Pooling) 降低数据量 对小块矩阵中的所有数取平均(平均池化)或者取最大(最大池化)并只输出一个值,再遍历 在这里插入图片描述
激活(Activation) 对卷积层的输出结果进行非线性映射 将中间结果套用某一个函数再输出,以使卷积后的线性映射转换成非线性映射 在这里插入图片描述

1.2 基本原理

假设输入的图片为 x x x,输出的分类或识别结果为 y y y,那么整个卷积神经网络都是 y = f ( x ) y=f(x) y=f(x) f ( . ) f(.) f(.)
不准确的说,可以粗略的以为有 y = f ( x ) = Wx \textbf{y}=f(\textbf{x})=\textbf{Wx} y=f(x)=Wx,其中 W \textbf{W} W表示权重矩阵。而神经网络无法直接解析出需要的映射,只能通过输入与输出的对应关系一点点调整权重矩阵,也就是所谓的“训练”过程。而用新的输入带入映射中检验是否与正确的输出对应,也就是“测试”过程。
将输入的图片视作矩阵,通过一层层地卷积、池化、激活等操作将初始矩阵提取特征、缩减数据量、转换成非线性映射,再循环,直到得到最终的向量。该向量唯一对应一个输出结果,若结果与正确输出不对应,则根据过程中间的权重矩阵一点点倒推回输入(反向传播),通过梯度下降法调整权重矩阵,继续验证。再循环,输入其他图片与结果,直到权重矩阵调整完毕。

2 卷积是怎么“卷”的

2.1 数学中的卷积

卷积的英文为Convolution,其中的词根Convolute有使卷绕、使盘旋的意思。卷积公式为 F ( t ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值