目录
1 基本概念及原理
1.1 基本概念
概念名称 | 目的 | 操作 | 示意图 |
---|---|---|---|
卷积(Convolution) | 提取特征 | 将图像矩阵遍历乘以卷积核矩阵并输出 | |
池化(Pooling) | 降低数据量 | 对小块矩阵中的所有数取平均(平均池化)或者取最大(最大池化)并只输出一个值,再遍历 | |
激活(Activation) | 对卷积层的输出结果进行非线性映射 | 将中间结果套用某一个函数再输出,以使卷积后的线性映射转换成非线性映射 |
1.2 基本原理
假设输入的图片为 x x x,输出的分类或识别结果为 y y y,那么整个卷积神经网络都是 y = f ( x ) y=f(x) y=f(x)的 f ( . ) f(.) f(.)。
不准确的说,可以粗略的以为有 y = f ( x ) = Wx \textbf{y}=f(\textbf{x})=\textbf{Wx} y=f(x)=Wx,其中 W \textbf{W} W表示权重矩阵。而神经网络无法直接解析出需要的映射,只能通过输入与输出的对应关系一点点调整权重矩阵,也就是所谓的“训练”过程。而用新的输入带入映射中检验是否与正确的输出对应,也就是“测试”过程。
将输入的图片视作矩阵,通过一层层地卷积、池化、激活等操作将初始矩阵提取特征、缩减数据量、转换成非线性映射,再循环,直到得到最终的向量。该向量唯一对应一个输出结果,若结果与正确输出不对应,则根据过程中间的权重矩阵一点点倒推回输入(反向传播),通过梯度下降法调整权重矩阵,继续验证。再循环,输入其他图片与结果,直到权重矩阵调整完毕。
2 卷积是怎么“卷”的
2.1 数学中的卷积
卷积的英文为Convolution,其中的词根Convolute有使卷绕、使盘旋的意思。卷积公式为 F ( t ) =