卷积是怎么“卷”的

卷积神经网络(CNN)中的卷积源于数学中的卷积概念,通过将卷积核翻转并应用于输入图像,实现特征提取。在二维空间中,卷积核与输入图像对应元素相乘并求和,形成新的特征映射。CNN中的“卷”意味着卷积核需先旋转180度再与输入图像进行运算。
摘要由CSDN通过智能技术生成

如何理解卷积神经网络(CNN)中的卷积?这里的卷积又是怎样“卷”的呢?

1 数学中的卷积

卷积的英文为Convolution,其中的词根Convolute有使卷绕、使盘旋的意思。卷积公式为 F ( t ) = ∫ − ∞ ∞ f ( τ ) g ( t − τ ) d τ . F(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau. F(t)=f(τ)g(tτ)dτ.其中,“卷”表示把函数 g ( τ ) g(\tau) g(τ)翻转成 g ( t − τ ) g(t-\tau) g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值