Mr. Kitayuta's Colorful Graph CodeForces - 505B

Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

Mr. Kitayuta wants you to process the following q queries.

In the i-th query, he gives you two integers — ui and vi.

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.

Input

The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.

The next m lines contain space-separated three integers — aibi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).

The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.

Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

Output

For each query, print the answer in a separate line.

Examples

Input

4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4

Output

2
1
0

Input

5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4

Output

1
1
1
1
2

Note

Let's consider the first sample.

 The figure above shows the first sample.

  • Vertex 1 and vertex 2 are connected by color 1 and 2.
  • Vertex 3 and vertex 4 are connected by color 3.
  • Vertex 1 and vertex 4 are not connected by any single color
  • 题意:
         给你三个数据:a b c,意思是a和b用c连接,如果a和d再用c链接,那
         可以说b和d连接。(媒介必须相同)再给你几组数据,问每一组数据
         (a,b)之间有几条这样的连接方案(颜色相同)的方案。      
    思路:
    这道题我的第一感觉·像这样连通图类型的应该用并查集,
    但不知道怎么用,后来看别人博客才知道用二维的,做出来之后感觉挺简单的;
  • #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    int f[210][210];//二维的
    int n,m;
    int getf(int v,int w)  
    {
        if(f[v][w]==v)
            return v;
        else
        {
            f[v][w]=getf(f[v][w],w);
            return f[v][w];//按每一种颜色查找祖先,颜色不变
        }
    }
    void merge(int v,int u,int w)
    {//按颜色合并
        
        int t1=getf(v,w);
        int t2=getf(u,w);
        if(t1!=t2)
            f[t2][w]=t1;
    }
    int main()
    {
        while(~scanf("%d%d",&n,&m))
        {
            for(int i=1; i<=n; i++)
                for(int j=1; j<=m; j++)
                    f[i][j]=i;
            int a,b,c,q,x,y;
            for(int i=0; i<m; i++)
            {
                scanf("%d%d%d",&a,&b,&c);
                merge(a,b,c);
            }
            scanf("%d",&q);
            for(int i=1; i<=q; i++)
            {
                int ans=0;
                scanf("%d%d",&x,&y);
                for(int j=1; j<=m; j++)
                {
                    int a=getf(x,j);
                    int b=getf(y,j);
                    if(a==b)
                        ans++;
                }
                printf("%d\n",ans);
            }
        }
    }
    

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值