数学知识:高斯消元(求解线性和异或方程组)

AcWing 883. 高斯消元解线性方程组

输入一个包含n个方程n个未知数的线性方程组。
方程组中的系数为实数。
求解这个方程组。

下图为一个包含m个方程n个未知数的线性方程组示例:
在这里插入图片描述
输入格式
第一行包含整数n。
接下来n行,每行包含n+1个实数,表示一个方程的n个系数以及等号右侧的常数。

输出格式
如果给定线性方程组存在唯一解,则输出共n行,其中第i行输出第i个未知数的解,结果保留两位小数。
如果给定线性方程组存在无数解,则输出“Infinite group solutions”。
如果给定线性方程组无解,则输出“No solution”。

数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过100。

输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00

Code:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;

const int N = 110;
const double eps = 1e-6;

int n;
double a[N][N];

int gauss()
{
    int c, r; // 列column. 行row
    for(c = 0, r = 0; c < n; c ++) //枚举每一列
    {
        int t = r;
        for(int i = r; i < n; i ++)
            if(fabs(a[i][c]) > fabs(a[t][c]))
                t = i; //找到第c列中绝对值最大的行
        
        if(fabs(a[t][c]) < eps)  continue;
        
        for(int i = c; i <= n; i ++)
            swap(a[t][i], a[r][i]); //将绝对值最大的一行换到第r行处
            
        for(int i = n; i >= c; i --) 
            a[r][i] /= a[r][c]; //将当前第r行的第一个数变成1
            
        for(int i = r + 1; i < n; i ++)
            if(fabs(a[i][c]) > eps)  //将第r行以下的所有行的第c列消成0
                for(int j = n; j >= c; j --)
                    a[i][j] -= a[i][c] * a[r][j];
        
        r ++;
    }
    
    if(r < n)
    {
        for(int i = r; i < n; i ++)
            if(fabs(a[i][n]) > eps)
                return 2; //无解(0 = 非零数)
        return 1; //无穷多组解
    }
    
    for(int i = n - 1; i >= 0; i --)
        for(int j = i + 1; j < n; j ++)
            a[i][n] -= a[i][j] * a[j][n];//内层循环一次处理一列
            
    return 0;//有唯一解
}

int main()
{
    cin >> n;
    for(int i = 0; i < n; i ++)
        for(int j = 0; j <= n; j ++)
            cin >> a[i][j];
            
    int t = gauss();
    if(t == 0)
    {
        for(int i = 0; i < n; i ++)
            printf("%.2lf\n", a[i][n]);
    }
    else if(t == 1)  puts("Infinite group solutions");
    else puts("No solution");
    
    return 0;
}

AcWing 884. 高斯消元解异或线性方程组

输入一个包含n个方程n个未知数的异或线性方程组。
方程组中的系数和常数为0或1,每个未知数的取值也为0或1。
求解这个方程组。

异或线性方程组示例如下:
M[1][1]x[1] ^ M[1][2]x[2] ^ … ^ M[1][n]x[n] = B[1]
M[2][1]x[1] ^ M[2][2]x[2] ^ … ^ M[2][n]x[n] = B[2]

M[n][1]x[1] ^ M[n][2]x[2] ^ … ^ M[n][n]x[n] = B[n]
其中“^”表示异或(XOR),M[i][j]表示第i个式子中x[j]的系数,B[i]是第i个方程右端的常数,取值均为0或1。

输入格式
第一行包含整数n。
接下来n行,每行包含n+1个整数0或1,表示一个方程的n个系数以及等号右侧的常数。

输出格式
如果给定线性方程组存在唯一解,则输出共n行,其中第i行输出第i个未知数的解。
如果给定线性方程组存在多组解,则输出“Multiple sets of solutions”。
如果给定线性方程组无解,则输出“No solution”。

数据范围
1≤n≤100
输入样例:
3
1 1 0 1
0 1 1 0
1 0 0 1
输出样例:
1
0
0

Code:

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110;

int n, a[N][N];

int gauss()
{
    int r, c;
    for(r = 0, c = 0; c < n; c ++)
    {
        int t = r;
        for(int i = r; i < n; i ++)
            if(a[i][c])  
            {
                t = i;
                break;
            }
        if(!a[t][c])  continue;
        
        for(int i = 0; i <= n; i ++)  swap(a[t][i], a[r][i]);
        for(int i = r + 1; i < n; i ++)
            if(a[i][c])
                for(int j = c; j <= n; j ++)
                                                                                    a[i][j] ^= a[r][j];
        
        r ++;
    }
    
    if(r < n)
    {
        for(int i = r; i < n; i ++)
            if(a[i][n])  return 2;
        return 1;
    }
    
    for(int i = n - 1; i >= 0; i --)
        for(int j = i + 1; j < n; j ++)
            a[i][n] ^= a[i][j] & a[j][n];
            
    return 0;
}
int main()
{
    cin >> n;
    for(int i = 0; i < n; i ++)
        for(int j = 0; j <= n; j ++)
            cin >> a[i][j];
    
    int res = gauss();
    
    if(res == 0)  
    {
        for(int i = 0; i < n; i ++)
            cout << a[i][n] << endl;
    }
    else if(res == 1)  puts("Multiple sets of solutions");
    else puts("No solution");
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Gröbner基的特殊高斯消元算法通过特殊的高斯消元法来计算Gröbner基。这种算法可以处理规模很大的问题,因为它使用了一些技巧来减少计算量。 算法步骤: 1. 对于给定的理想$I$,构造一个包含$I$的理想$J$,使得$J$的Gröbner基可以用特殊高斯消元法计算出来。这个步骤通常使用Buchberger算法来完成。 2. 对于$J$的Gröbner基$G$的每个元素$g_i$,计算一个消元子$f_i$,使得$f_i$是$g_i$中的最高项。 3. 对于每对消元子$f_i$和$f_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$f_j$。 4. 对于每个消元子$f_i$,计算一个被消元子$h_i$,使得$h_i$是$I$中所有多项式中不包含$f_i$的最高项。 5. 对于每对消元子$f_i$和被消元子$h_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$h_j$。 6. 重复步骤4和5,直到没有可约的消元子和被消元子。 7. 对于每个消元子$f_i$和被消元子$h_i$,计算它们的最小公倍式$u_i$。 8. 返回$u_1,\dots,u_m$,它们组成了$I$的Gröbner基。 C代码实现: 以下是一个简单的C代码实现,用于计算给定多项式的Gröbner基。这个代码只是一个示例,可能需要进行修改才能处理更复杂的问题。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int deg; // 多项式的次数 int *coeffs; // 多项式的系数 } poly_t; // 计算两个多项式的最小公倍式 poly_t *lcm(poly_t *f, poly_t *g) { // TODO: 实现计算最小公倍式的代码 } // 计算多项式的消元子 poly_t *lead_term(poly_t *f) { poly_t *lt = (poly_t *) malloc(sizeof(poly_t)); lt->deg = f->deg; lt->coeffs = (int *) calloc(lt->deg + 1, sizeof(int)); lt->coeffs[lt->deg] = 1; return lt; } // 计算多项式的被消元子 poly_t *elim_term(poly_t *f, poly_t **polys, int n) { poly_t *et = (poly_t *) malloc(sizeof(poly_t)); et->deg = 0; et->coeffs = (int *) calloc(1, sizeof(int)); for (int i = 0; i < n; i++) { if (polys[i] == f) continue; int deg = polys[i]->deg - f->deg; if (deg < 0) continue; int coeff = polys[i]->coeffs[polys[i]->deg]; if (coeff == 0) continue; if (deg > et->deg) { et->coeffs = (int *) realloc(et->coeffs, (deg + 1) * sizeof(int)); for (int j = et->deg + 1; j <= deg; j++) { et->coeffs[j] = 0; } et->deg = deg; } et->coeffs[deg] = coeff; } return et; } // 判断两个多项式是否可约 int is_reducible(poly_t *f, poly_t *g) { // TODO: 实现判断多项式是否可约的代码 } // 计算Gröbner基 poly_t **groebner(poly_t **polys, int n) { // TODO: 实现计算Gröbner基的代码 } int main() { // TODO: 编写测试代码 return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值