题目链接
这道题和高斯消元其实很像,但是异或消元要比加减法消元容易一点,因为首先系数只有0或1,然后很容易异或,因为
1^1=0,
1^0=1,
0^1=1,
0^0=0.
上一次高斯消元的博文
然后主要思路还是形成“倒”金字塔,然后从后往前求解。
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=110;
int a[N][N];
int n;
void out()
{
for(int i=0;i<n;i++)
{for(int j=0;j<n+1;j++)
printf("%2d",a[i][j]);
puts("");
}
puts("");
}
int gauss()
{
int r,c;
for(r=0,c=0;c<n;c++)
{
int t=r;
for(int i=r+1;i<n;i++)
{
if(a[i][c])
{t=i;
break;}
}
if(!a[t][c]) continue;
for(int i=c;i<=n;i++) swap(a[r][i],a[t][i]);
for(int i=r+1;i<n;i++)
{
if(a[i][c])
{
for(int j=c;j<=n;j++)
a[i][j]^=a[r][j];
}
}
r++;
}
if(r<n)
{
for(int i=r;i<n;i++)
if(!a[i][n])
return 1;
return 2;
}
for(int i=n-1;i>=0;i--)
{
for(int j=i+1;j<n;j++)
a[i][n]^=a[i][j]&a[j][n];
}
return 0;
}
int main(void)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
for(int j=0;j<n+1;j++)
scanf("%d",&a[i][j]);
int t=gauss();
if(t==0)
{
for(int i=0;i<n;i++)
printf("%d\n",a[i][n]);
}
else if(t==1) puts("Multiple sets of solutions");
else
puts("No solution");
}