AcWing 884. 高斯消元解异或线性方程组

27 篇文章 1 订阅
23 篇文章 2 订阅

题目链接

在这里插入图片描述

在这里插入图片描述
这道题和高斯消元其实很像,但是异或消元要比加减法消元容易一点,因为首先系数只有0或1,然后很容易异或,因为
1^1=0,
1^0=1,
0^1=1,
0^0=0.
上一次高斯消元的博文
然后主要思路还是形成“倒”金字塔,然后从后往前求解。

#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

const int N=110;

int a[N][N];
int n;

void out()
{
    for(int i=0;i<n;i++)
    {for(int j=0;j<n+1;j++)
    printf("%2d",a[i][j]);
        puts("");
    }
    puts("");
}
int gauss()
{
    int r,c;
    for(r=0,c=0;c<n;c++)
    {
        int t=r;
        for(int i=r+1;i<n;i++)
        {
            if(a[i][c])
            {t=i;
            break;}
        }
        if(!a[t][c]) continue;
        for(int i=c;i<=n;i++) swap(a[r][i],a[t][i]);
        for(int i=r+1;i<n;i++)
        {
            if(a[i][c])
            {
                for(int j=c;j<=n;j++)
                a[i][j]^=a[r][j];
            }
            
        }
        
        r++;
    }
    if(r<n)
    {
        for(int i=r;i<n;i++)
        if(!a[i][n])
        return 1;
        return 2;
    }
    for(int i=n-1;i>=0;i--)
    {
        for(int j=i+1;j<n;j++)
        a[i][n]^=a[i][j]&a[j][n];
    }
    return 0;
}

int main(void)
{
    scanf("%d",&n);
    for(int i=0;i<n;i++)
    for(int j=0;j<n+1;j++)
    scanf("%d",&a[i][j]);
    int t=gauss();
    if(t==0)
    {
        for(int i=0;i<n;i++)
        printf("%d\n",a[i][n]);
    }
    else if(t==1) puts("Multiple sets of solutions");
    else
    puts("No solution");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值