「全流程解析:Logistic回归代码实现及相关技术探究」

Logistic回归全流程代码,包含:导入数据 数据划分 基线表生成 LASSO回归
批量单因素logistic 多因素logistic 列线图 ROC 校准曲线
DCA
这个程序主要是对一个数据集进行分析和建模。下面我会逐步解释程序的每个部分。

导入数据和格式转换部分:

首先,程序指定了一个路径变量path,你需要将其更改为你自己的路径。
然后,程序使用read.csv函数从一个csv文件中读取数据,并将其存储在变量data中。
接下来,程序使用dplyr包中的transmute函数对数据进行格式转换。它将一些列转换为因子变量(分类变量),并保持其他列不变。这里使用了factor函数和levels参数来指定每个因子变量的水平。
最后,程序使用VIM包中的aggr函数检查数据中是否存在缺失值,并以可视化的方式显示缺失情况。
数据划分部分:

首先,程序使用set.seed函数设置随机数种子,以确保结果的可重现性。
然后,程序使用caret包中的createDataPartition函数将数据集划分为训练集和测试集,比例为70:30。划分的结果存储在变量num中。
最后,程序使用划分结果将数据集分为训练集和测试集,分别存储在变量train和test中。
基线表生成部分:

首先,程序使用tableone包中的CreateTableOne函数生成基线表。该函数接受一些参数,包括要汇总的变量、分层变量、数据来源等。
在这个程序中,基线表中的变量由myVars和catVars指定。myVars是要汇总的所有变量,catVars是分类变量。
然后,程序使用print函数打印基线表,并将结果存储在变量tabMat中。
最后,程序使用write.csv函数将基线表保存为csv文件。
LASSO筛选变量部分:

首先,程序使用model.matrix函数将自变量数据转换为矩阵形式,以满足LASSO回归的要求。这里使用了model.matrix和data.matrix函数来进行数据转换。
然后,程序使用glmnet包中的glmnet函数进行LASSO回归。该函数接受自变量矩阵x、因变量向量y、回归类型family和正则化参数alpha等。
接下来,程序使用plot函数绘制LASSO回归的结果图,显示不同正则化参数下的系数收缩情况。
然后,程序使用交叉验证方法选择最佳的正则化参数,并使用cv.glmnet函数进行交叉验证。该函数接受自变量矩阵x、因变量向量y、回归类型family、正则化参数范围lambda和交叉验证折数nfolds等。
最后,程序使用coef函数提取最小正则化参数下的非零系数,并将结果存储在变量Coefficients中。
批量单因素Logistic回归部分:

首先,程序定义了一个函数Uni_log,用于进行批量单因素Logistic回归。该函数接受一个自变量名作为参数,并返回回归结果的数据框。
然后,程序使用colnames函数提取训练集中的变量名,并存储在变量var.names中。
接下来,程序使用lapply函数对var.names中的每个变量应用Uni_log函数,得到一个包含多个回归结果的列表。
最后,程序使用ldply函数将列表中的回归结果整合成一个数据框,并将结果保存为csv文件。
多因素Logistic回归部分:

首先,程序使用as.formula函数构建多因素Logistic回归的公式,其中包含单因素回归中显著的变量。
然后,程序使用glm函数进行多因素Logistic回归。该函数接受公式form、回归类型family和数据来源data等。
接下来,程序使用summary函数对回归结果进行总结,并提取系数、标准误差、置信区间和p值等。
最后,程序将提取的结果整合成一个数据框,并将结果保存为csv文件。
列线图、模型验证部分:

这部分包括ROC曲线、校准曲线和DCA曲线的绘制。
首先,程序使用pROC包中的roc函数计算训练集和测试集的ROC曲线。
然后,程序使用plot函数绘制ROC曲线,并标出AUC值。
接下来,程序使用calibrate函数计算训练集和测试集的校准曲线。
最后,程序使用ggDCA包绘制DCA曲线。
这个程序涉及到的知识点包括数据导入和格式转换、数据划分、基线表生成、LASSO回归、批量单因素Logistic回归、多因素Logistic回归、模型验证等
以下是一个示例的Logistic回归全流程代码,包含了你提到的各个部分。请注意,这只是一个示例,具体实现可能因为数据集和软件包的不同而有所不同。你可以根据自己的需求进行修改和调整。

```R
# 导入所需的包
library(readr)
library(dplyr)
library(VIM)
library(caret)
library(tableone)
library(glmnet)
library(pROC)
library(calibrate)
library(ggDCA)

# 导入数据和格式转换部分
path <- "your_data_path" # 将路径更改为你自己的路径
data <- read_csv(file.path(path, "data.csv"))

# 格式转换
data <- data %>%
mutate(factor_var1 = as.factor(var1),
factor_var2 = as.factor(var2),
factor_var3 = as.factor(var3))

# 检查缺失值
aggr(data)

# 数据划分部分
set.seed(123) # 设置随机数种子
num <- createDataPartition(data$target, p = 0.7, list = FALSE)
train <- data[num, ]
test <- data[-num, ]

# 基线表生成部分
myVars <- c("var1", "var2", "var3", "var4")
catVars <- c("factor_var1", "factor_var2", "factor_var3")
tabMat <- CreateTableOne(vars = myVars, strata = catVars, data = train)
print(tabMat)
write.csv(tabMat, file.path(path, "baseline_table.csv"))

# LASSO回归
x <- model.matrix(target ~ var1 + var2 + var3 + var4, data = train)
y <- train$target

lasso_model <- glmnet(x, y, family = "binomial", alpha = 1)
plot(lasso_model)
cv_model <- cv.glmnet(x, y, family = "binomial", alpha = 1)
Coefficients <- coef(cv_model, s = "lambda.min")

# 批量单因素Logistic回归
Uni_log <- function(var_name) {
formula <- as.formula(paste("target ~", var_name))
model <- glm(formula, data = train, family = "binomial")
result <- summary(model)$coefficients
return(result)
}

var.names <- colnames(train)[1:4]
results <- lapply(var.names, Uni_log)
results_df <- ldply(results)
write.csv(results_df, file.path(path, "univariate_logistic_results.csv"))

# 多因素Logistic回归
formula <- as.formula("target ~ var1 + var2 + var3 + var4")
multi_model <- glm(formula, data = train, family = "binomial")
summary_df <- summary(multi_model)$coefficients
write.csv(summary_df, file.path(path, "multivariate_logistic_results.csv"))

# 列线图、模型验证部分
roc_train <- roc(train$target, predict(multi_model, type = "response"))
roc_test <- roc(test$target, predict(multi_model, newdata = test, type = "response"))

plot(roc_train, main = "ROC Curve (Train)", col = "blue")
lines(roc_test, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)

calibration_train <- calibrate(roc_train, method = "boot", B = 100)
calibration_test <- calibrate(roc_test, method = "boot", B = 100)

plot(calibration_train, main = "Calibration Curve (Train)", col = "blue")
lines(calibration_test, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)

dca_train <- ggDCA(roc_train)
dca_test <- ggDCA(roc_test)

plot(dca_train, main = "DCA Curve (Train)", col = "blue")
lines(dca_test, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)
```

请注意,这只是一个示例代码,具体实现可能因为数据集和软件包的不同而有所不同。你需要根据自己的数据集和需求进行适当的修改和调整。

YID:92350698037809482

听雨统计工作室



Logistic回归是一种广泛应用于分类问题的统计方法,它可以帮助我们预测二分类问题中的概率。在本文中,我们将介绍Logistic回归的全流程代码,并逐步解释其中的关键步骤和概念。

首先,我们导入数据。数据的准备是进行Logistic回归的第一步,我们需要收集具有代表性的数据样本。数据的导入通常会使用Python的pandas库,它提供了强大的数据处理和分析功能。在导入数据之后,我们要进行数据的预处理,包括数据清洗、缺失值处理和特征工程等步骤,以确保数据的质量和准确性。

接下来,我们需要对数据进行划分。数据划分是为了在训练和测试阶段使用不同的数据集,以评估模型的性能。常用的数据划分方法有随机划分和交叉验证等。通过合理的数据划分,我们可以有效地评估模型的泛化能力。

在数据划分完成后,我们需要生成基线表。基线表是指在没有任何特征工程和模型优化的情况下,使用最简单的方法构建的模型表现。通过生成基线表,我们可以对比后续优化方法的效果,评估模型的改进程度。

接着,我们将介绍LASSO回归。LASSO回归是一种特征选择方法,它可以通过对模型的惩罚项进行优化,自动筛选出对目标变量有较大影响的特征。LASSO回归不仅可以提高模型的预测能力,还可以降低模型的复杂度,避免过拟合问题。

除了LASSO回归,我们还会介绍批量单因素logistic和多因素logistic。这两种方法可以帮助我们分析不同因素对目标变量的影响程度。通过分析因素的权重和显著性,我们可以对问题的关键因素有更深入的了解。

在模型分析过程中,列线图、ROC曲线和校准曲线是常用的可视化方法。列线图可以帮助我们比较不同因素的效果,ROC曲线可以评估模型的分类性能,校准曲线可以判断模型的预测准确性。通过这些可视化方法,我们可以更直观地理解模型的性能和特点。

最后,我们会介绍DCA方法。DCA是一种常用的决策分析方法,它可以帮助我们在不同决策策略下评估模型的效果。通过比较不同决策策略的效益,我们可以选择最优的决策方案,并为实际问题的决策提供支持。

综上所述,本文详细介绍了Logistic回归的全流程代码,并围绕导入数据、数据划分、基线表生成、LASSO回归、批量单因素logistic、多因素logistic、列线图、ROC曲线、校准曲线和DCA方法展开了阐述。通过本文的学习,读者可以对Logistic回归的应用和方法有更深入的理解,并在实际问题中灵活运用。希望本文能够为读者提供有价值的技术分析,并让读者在程序员社区的博客中获得更多的启发和交流。

以上相关代码,程序地址:http://coupd.cn/698037809482.html

  • 43
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值