Matrix Power Series

文章讲解了如何借助矩阵快速幂技术高效计算矩阵A的累加和(A+A^2+...+A^k),并考虑了结果对m取模的情况。
摘要由CSDN通过智能技术生成

描述

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

输入

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

输出

Output the elements of S modulo m in the same way as A is given.

样例输入

2 2 4
0 1
1 1

样例输出

1 2
2 3

题解:一个是矩阵快速幂,还有就是像(k^1+k^2+...+k^n-1+k^n)=(k^1+k^2...+k^n/2-1+k^n/2)+(k^n/2+1+k^n/2+2+...+k^n-1+k^n)=(k^1+k^2...+k^n/2-1+k^n/2)+(k^1+k^2...+k^n/2-1+k^n/2)*k^n/2一样来处理。

#include<iostream> 
#include<algorithm> 
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<iomanip>
#include<string.h>
#include<set>
#include<string>
#include<map>
#include<bitset>
#pragma warning(disable : 4996)
using namespace std;
//定义矩阵
class Martix
{
public:
    long long a[35][35];
    Martix()
    {
        memset(a, 0, sizeof(a));
    }

private:

};
//a是初始输入矩阵,ans是输出的答案
Martix a, ans;
long long n, m;

//矩阵的乘
Martix mul(Martix x, Martix y) {
    Martix c;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            for (int k = 1; k <= n; k++)
                c.a[i][j] = (c.a[i][j] + x.a[i][k] * y.a[k][j]) % m;
        }
    }

    return c;
}
//矩阵的加
Martix add(Martix x, Martix y)
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            x.a[i][j] = (x.a[i][j] + y.a[i][j]) % m;
        }
    }
    return x;
}
//矩阵快速幂
Martix ksm(Martix x, int k) {
    Martix res;
    for (int i = 1; i <= n; i++)
        res.a[i][i] = 1;
    while (k) {
        if (k & 1) res = mul(res, x);
        x = mul(x, x);
        k >>= 1;
    }
    return res;
}
//求解(a^1+a^2+...+a^k-1+a^k)的值
Martix solve(int k)
{
    if (k == 1) return a;
    //求解(a^1+a^2+...+a^k/2-1+a^k/2)的值
    Martix t = solve(k >> 1);
    //如果k是偶数求出(a^1+a^2+...+a^k/2-1+a^k/2)后自己加上自己乘(a^k/2)的值就行了
    //如果k是奇数上面的方法其实只求了(a^1+a^2+...+a^k-1+a^k-1),因为是奇数qwq,记得加上a^k
    if (k & 1)
        return add(ksm(a, k), add(t, mul(t, ksm(a, k >> 1))));
    else
        return add(t, mul(t, ksm(a, k >> 1)));
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    long long k;
    //输入初始数据
    cin >> n >> k >> m;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            cin >> a.a[i][j];
        }
    }
    //求解矩阵
    ans = solve(k);
    //输出
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            cout << ans.a[i][j];
            if (j == n)
                cout << endl;
            else
                cout << " ";
        }
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值