面试题68 - I 二叉搜索树的最近公共祖先
题目描述: 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
- 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x的深度尽可能大(一个节点也可以是它自己的祖先)。”
- 解题思路:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==NULL)
return NULL;
while(1){
if(p->val>root->val && q->val>root->val)
root=root->right;
else if(p->val<root->val && q->val<root->val)
root=root->left;
else
return root;
}
}
};
面试题68 - II 二叉树的最近公共祖先
题目描述: 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
**
- 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一 个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
**
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节
点本身。
解题思路:
-
如果根节点就为空,那么就返回根节点。
-
(1)如果左子树不为空,并且两个节点都在左子树中(包含左子树的根节点),那么所找的节点就在左子树中,左子树中递归;
(2)如果右子树不为空,并且两个节点都在又子树中,那么就在右子树中递归;
(3)如果以上两条都不成立,那么说明一个节点在左子树,一个节点在右子树中,那么就返回该节点。 -
单独编写一个函数用于判断一个节点是否在一棵树中,该函数返回bool值,方便判断。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==p||root==q||!root)return root;
struct TreeNode* left=lowestCommonAncestor(root->left, p, q);
struct TreeNode* right=lowestCommonAncestor(root->right, p, q);
if(!left&&!right)return NULL;
else if(left&&!right)return left;
else if(right&&!left)return right;
return root;
}
};
参考博客:https://blog.csdn.net/yuanliang861/article/details/84670666