Opencv中特征点提取和特征匹配算法详解(ORB SIFT SURF FAST)

特征匹配(Feature Match)是计算机视觉中很多应用的基础,譬如在目标识别、三维重建、视觉SLAM中设计视觉里程计等会用到,这个概念让新手刚开始摸不到头脑,所以花一些时间去理清这些概念是有必要的,下面通过查阅资料和自己的一些感悟记录下来常见的击中特征提取和匹配算法,通过这篇文章可以很好的理解特征提取的来龙去脉。
参考博客 https://www.cnblogs.com/wyuzl/p/7816011.html

特征点检测与特征匹配的原理

从图像中选取某些特征点并对图像进行局部分析,而不是对整个图像进行分析。

特征点

是一幅图像中独特的像素点,我们可以认为是这幅图像的特征,一帮特征点都具有如下的性质:
1.可重复性(相同的“区域”可以在不同的图像中找到)
2.可区别性 (不同的“区域”有不同的表达)
3.高效性 (同一幅图像中,特征点的数量远小于像素的数量)
4.本地性 (特征仅与一小片图像区域有关)
特征点有两种性质:1旋转不变性,2尺度不变性
在这里插入图片描述

我们常说的特征点其实是包括了关键子和描述子,就例如当说SIFT特征点时,就是指的是“提取SIFT关键子和计算SIFT描述子”&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值