GEE计算

GEE计算

#函数运算:abs()、round()、floor()、ceil()、sqrt()

数学运算:add()、subtract()、multiply()、divide()

函数运算括号内不用写内容而数学运算的括号内要写运算的变量

1 << 5表示:1零填充左位移,通过从右推入零向左位移,并使最左边的位脱落,则在8bit表示中数字1变化如下

00 00 00 01 << 00 01 00 00

若pixel_qa表示有云像元,则bit5为1,即pixel_qa像元值为00 01 00 00,通过bitwiseAnd( )可得到云像元的掩膜,进而可以进行去云操作

### 使用 GEE 计算 NDRS 归一化差异水体指数 归一化差异水体指数(Normalized Difference Water Index, NDWI)用于评估植被冠层中的水分含量以及检测地表水的存在。NDWI 的计算基于近红外波段和短波红外波段之间的反射率差值与总和之比[^4]。 对于 Landsat 数据,通常使用 Band 3 和 Band 5 来计算 NDWI: \[ \text{NDWI} = \frac{(Band\ 3 - Band\ 5)}{(Band\ 3 + Band\ 5)} \] 下面是一个完整的 Python 脚本示例,在 Google Earth Engine 中加载 Landsat 图像集合,并计算 NDWI: ```javascript // 加载Landsat 8 TOA图像集合 var dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') .filterDate('2020-01-01', '2020-12-31') // 过滤日期范围 .filterBounds(geometry); // 设置研究区域边界 // 获取单张影像作为样本 var image = dataset.first(); // 定义可视化参数 var vizParams = { bands: ['B4', 'B3', 'B2'], min: 0, max: 0.5, }; // 显示原始RGB合成图 Map.setCenter(116.57, 39.92, 8); Map.addLayer(image, vizParams, 'Landsat 8'); // 计算NDWI var ndwi = image.normalizedDifference(['B3', 'B5']); // 可视化NDWI结果 var ndwiViz = {min: -1, max: 1, palette: ['blue','white']}; Map.addLayer(ndwi, ndwiViz, 'NDWI'); ``` 上述脚本展示了如何通过调用 `normalizedDifference` 方法来快速简便地创建 NDWI 层。该方法接受两个波段名称作为输入参数,并返回一个新的栅格对象表示 NDWI 结果[^3]。 为了进一步处理或分析这些数据,可以应用阈值过滤器识别水域位置或将 NDWI 输出导出为 GeoTIFF 文件以便离线查看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值