TEC:Knowledge Graph Embedding with Triple Context
1 问题
知识图谱没有充分利用上,丰富的信息,利用其周围信息和路径信息,基于以上信息进行知识知识图谱补全。
2 模型
context 信息包括:neighbor context和path context。
2.1 Context详细信息
- Neighbor Context
对于其Neighbor Context只进行出度的计算, C N ( h ) = ( r 4 , e 1 ) , ( r 3 , e 2 ) , ( r 2 , e 3 ) , ( r 1 , e 8 ) , ( r 1 , e 1 0 ) CN (h) = {(r_4, e_1), (r_3, e_2), (r_2, e_3), (r_1, e_8), (r_1, e_10)} CN(h)=(r4,e1),(r3,e2),(r2,e3),(r1,e8),(r1,e10) - Path Context
对于Path Context, C P ( h , t ) = ( r 1 , r 2 ) , ( r 2 , r 1 , r 2 ) . CP (h,t) = {(r_1,r_2), (r_2,r_1,r_2)}. CP(h,t)=(r1,r2),(r2,r1,r2).,只保存h和t之间的关系。
C ( h , r , t ) = C N ( h ) ∪ C P ( h , t ) C(h,r,t) = CN (h) ∪CP (h,t) C(h,r,t)=CN(h)∪CP(h,t)
2.2 打分函数
最大化可能性:
其可以写成以下形式:
通过以上式子进行训练,消耗资源,因此进行训练时采用负采样的形式进行训练
其他两种类似。