OFDM多径传输时域和频域模型,以及循环前缀的作用

文章详细阐述了多径信道传输模型,重点分析了OFDM系统中循环前缀(CP)的重要作用。CP的主要功能是避免符号间干扰和消除子载波间干扰。通过将线性卷积转换为循环卷积,OFDM结合CP使得信道均衡和信号解调能在频域并行处理,降低了系统复杂度。此外,文章还探讨了频域信道系数与时域信道系数之间的关系,揭示了OFDM时域和频域模型的等价性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、 多径信道传输模型

从信号传输的基本模型入手。考虑如下式所示的线性时不变系统,
y ( t ) = h ( t ) ∗ x ( t ) = ∫ h ( τ ) x ( t − τ ) d τ = ∫ h ( t − τ ) x ( τ ) d τ ( 1 ) y(t) = h(t) * x(t) = \int h(\tau) x(t- \tau) d\tau = \int h(t-\tau) x(\tau) d\tau \quad \quad (1) y(t)=h(t)x(t)=h(τ)x(tτ)dτ=h(tτ)x(τ)dτ(1)

其中, x ( t ) x(t) x(t) 表示输入信号, h ( t ) h(t) h(t)表示信道冲激响应, y ( t ) y(t) y(t)表示接收信号。则离散形式为
y ( n ) = ∑ l = 0 L − 1 h ( l ) x ( n − l ) ( 2 ) y(n) = \sum_{l=0}^{L-1} h(l) x(n-l) \quad \quad (2) y(n)=l=0L1h(l)x(nl)(2)

式(2)是多径信道下的信号传输模型。 L L L表示多径信道的阶数。

2、OFDM循环前缀的作用

对于OFDM来说,发射信号 x ( n ) x(n) x(n)由IFFT运算(有效信号)和添加循环前缀(CP)得到,其中有效信号可以表示为
x ( n ) = 1 N ∑ k = 1 N X ( k ) e j 2 π n k N , n = 1 , … , N , k = 1 , … , N ( 3 ) x(n) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} X(k) e^{j 2\pi \frac{nk}{N}}, n=1, \ldots, N, k = 1, \ldots, N \quad \quad (3) x(n)=N 1k=1NX(k)ej2πNnk,n=1,,N,k=1,,N(3)

式中, X ( k ) X(k) X(k)为第 k k k个子载波上的发射信号, N N N为IFFT的点数(也是一个OFDM符号时域有效信号 x ( n ) x(n) x(n)的样点数目)。

对于单个OFDM符号,接收信号(2)的矩阵形式如下:
[ y ( − N C P ) ⋮ y ( − 1 ) y ( 0 ) y ( 1 ) y ( 2 ) ⋮ y ( N − 2 ) y ( N − 1 ) ] = [ h ( 0 ) 0 0 0 0 0 0 0 0 ⋮ ⋱ 0 0 0 0 0 0 0 h ( L − 1 ) ⋯ h ( 0 ) 0 0 0 0 0 0 0 h ( L − 1 ) ⋯ h ( 0 ) 0 0 0 0 0 0 0 ⋱ ⋮ h ( 0 ) 0 0 0 0 0 0 0 h ( L − 1 ) h ( 0 ) 0 0 0 0 0 0 0 ⋱ ⋱ 0 0 0 0 0 0 0 ⋱ h ( 0 ) 0 0 0 0 0 0 0 h ( L − 1 ) ⋯ h ( 0 ) ] [ x ( − N C P ) ⋮ x ( − 1 ) x ( 0 ) x ( 1 ) x ( 2 ) ⋮ x ( N − 2 ) x ( N − 1 ) ] ( 4 ) \begin{bmatrix} y(-N_{CP}) \\ \vdots \\ y(-1) \\ y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N-2) \\ y(N-1) \end{bmatrix} = \begin{bmatrix} h(0)& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \ddots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ h(L-1) & \cdots & h(0) & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & h(L-1) & \cdots & h(0) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \ddots & \vdots & h(0) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h(L-1) & & h(0) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ddots & & h(0) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & h(L-1) & \cdots & h(0) \end{bmatrix} \begin{bmatrix} x(-N_{CP}) \\ \vdots \\ x(-1) \\ x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-2) \\ x(N-1) \end{bmatrix} \quad \quad (4) y(NCP)y(1)y(0)y(1)y(2)y(N2)y(N1) = h(0)h(L1)0000000h(L1)0000000h(0)0000000h(0)h(L1)0000000h(0)0000000h(0)0000000h(L1)0000000h(0)00000000h(0)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值