1、 多径信道传输模型
从信号传输的基本模型入手。考虑如下式所示的线性时不变系统,
y ( t ) = h ( t ) ∗ x ( t ) = ∫ h ( τ ) x ( t − τ ) d τ = ∫ h ( t − τ ) x ( τ ) d τ ( 1 ) y(t) = h(t) * x(t) = \int h(\tau) x(t- \tau) d\tau = \int h(t-\tau) x(\tau) d\tau \quad \quad (1) y(t)=h(t)∗x(t)=∫h(τ)x(t−τ)dτ=∫h(t−τ)x(τ)dτ(1)
其中, x ( t ) x(t) x(t) 表示输入信号, h ( t ) h(t) h(t)表示信道冲激响应, y ( t ) y(t) y(t)表示接收信号。则离散形式为
y ( n ) = ∑ l = 0 L − 1 h ( l ) x ( n − l ) ( 2 ) y(n) = \sum_{l=0}^{L-1} h(l) x(n-l) \quad \quad (2) y(n)=l=0∑L−1h(l)x(n−l)(2)
式(2)是多径信道下的信号传输模型。 L L L表示多径信道的阶数。
2、OFDM循环前缀的作用
对于OFDM来说,发射信号 x ( n ) x(n) x(n)由IFFT运算(有效信号)和添加循环前缀(CP)得到,其中有效信号可以表示为
x ( n ) = 1 N ∑ k = 1 N X ( k ) e j 2 π n k N , n = 1 , … , N , k = 1 , … , N ( 3 ) x(n) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} X(k) e^{j 2\pi \frac{nk}{N}}, n=1, \ldots, N, k = 1, \ldots, N \quad \quad (3) x(n)=N1k=1∑NX(k)ej2πNnk,n=1,…,N,k=1,…,N(3)
式中, X ( k ) X(k) X(k)为第 k k k个子载波上的发射信号, N N N为IFFT的点数(也是一个OFDM符号时域有效信号 x ( n ) x(n) x(n)的样点数目)。
对于单个OFDM符号,接收信号(2)的矩阵形式如下:
[ y ( − N C P ) ⋮ y ( − 1 ) y ( 0 ) y ( 1 ) y ( 2 ) ⋮ y ( N − 2 ) y ( N − 1 ) ] = [ h ( 0 ) 0 0 0 0 0 0 0 0 ⋮ ⋱ 0 0 0 0 0 0 0 h ( L − 1 ) ⋯ h ( 0 ) 0 0 0 0 0 0 0 h ( L − 1 ) ⋯ h ( 0 ) 0 0 0 0 0 0 0 ⋱ ⋮ h ( 0 ) 0 0 0 0 0 0 0 h ( L − 1 ) h ( 0 ) 0 0 0 0 0 0 0 ⋱ ⋱ 0 0 0 0 0 0 0 ⋱ h ( 0 ) 0 0 0 0 0 0 0 h ( L − 1 ) ⋯ h ( 0 ) ] [ x ( − N C P ) ⋮ x ( − 1 ) x ( 0 ) x ( 1 ) x ( 2 ) ⋮ x ( N − 2 ) x ( N − 1 ) ] ( 4 ) \begin{bmatrix} y(-N_{CP}) \\ \vdots \\ y(-1) \\ y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N-2) \\ y(N-1) \end{bmatrix} = \begin{bmatrix} h(0)& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \ddots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ h(L-1) & \cdots & h(0) & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & h(L-1) & \cdots & h(0) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \ddots & \vdots & h(0) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h(L-1) & & h(0) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ddots & & h(0) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & h(L-1) & \cdots & h(0) \end{bmatrix} \begin{bmatrix} x(-N_{CP}) \\ \vdots \\ x(-1) \\ x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-2) \\ x(N-1) \end{bmatrix} \quad \quad (4)
y(−NCP)⋮y(−1)y(0)y(1)y(2)⋮y(N−2)y(N−1)
=
h(0)⋮h(L−1)0000000⋱⋯h(L−1)0000000h(0)⋯⋱0000000h(0)⋮h(L−1)0000000h(0)⋱0000000h(0)⋱0000000⋱h(L−1)0000000h(0)⋯00000000h(0)