从数学公式出发,结合具体数值示例逐步解析CP的作用机制:
1. 时域信号模型
设原始OFDM符号长度为
N
=
4
N=4
N=4,数据点为
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
x
[
3
]
x[0],x[1],x[2],x[3]
x[0],x[1],x[2],x[3],添加CP长度
L
=
2
L=2
L=2后:
x
cp
=
[
x
[
2
]
,
x
[
3
]
⏟
CP
,
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
x
[
3
]
⏟
数据
]
x_{\text{cp}} = [\underbrace{x[2],x[3]}_{\text{CP}}, \underbrace{x[0],x[1],x[2],x[3]}_{\text{数据}}]
xcp=[CP
x[2],x[3],数据
x[0],x[1],x[2],x[3]]
2. 多径信道干扰
假设两径信道冲激响应:
h
[
n
]
=
[
h
0
,
h
1
]
,
其中时延
τ
1
=
1
个采样周期
h[n] = [h_0, h_1], \quad \text{其中时延} \tau_1 = 1 \text{个采样周期}
h[n]=[h0,h1],其中时延τ1=1个采样周期
在时域上,接收信号是输入信号和系统响应的线性卷积:
y
[
n
]
=
x
cp
∗
h
=
∑
m
=
0
1
h
[
m
]
x
cp
[
n
−
m
]
=
y[n] = x_{\text{cp}} \ast h = \sum_{m=0}^{1} h[m]x_{\text{cp}}[n-m]=
y[n]=xcp∗h=m=0∑1h[m]xcp[n−m]=
具体展开:
y [ 0 ] = h 0 x [ 2 ] y [ 1 ] = h 0 x [ 3 ] + h 1 x [ 2 ] y [ 2 ] = h 0 x [ 0 ] + h 1 x [ 3 ] y [ 3 ] = h 0 x [ 1 ] + h 1 x [ 0 ] y [ 4 ] = h 0 x [ 2 ] + h 1 x [ 1 ] y [ 5 ] = h 0 x [ 3 ] + h 1 x [ 2 ] \begin{align*} y[0] &= h_0x[2] \\ y[1] &= h_0x[3] + h_1x[2] \\ y[2] &= h_0x[0] + h_1x[3] \\ y[3] &= h_0x[1] + h_1x[0] \\ y[4] &= h_0x[2] + h_1x[1] \\ y[5] &= h_0x[3] + h_1x[2] \end{align*} y[0]y[1]y[2]y[3]y[4]y[5]=h0x[2]=h0x[3]+h1x[2]=h0x[0]+h1x[3]=h0x[1]+h1x[0]=h0x[2]+h1x[1]=h0x[3]+h1x[2]
3. 去除CP与循环卷积等效
接收端丢弃前
L
=
2
L=2
L=2个CP采样,保留有效数据段:
y
eff
=
[
y
[
2
]
,
y
[
3
]
,
y
[
4
]
,
y
[
5
]
]
=
[
h
0
x
[
0
]
+
h
1
x
[
3
]
,
h
0
x
[
1
]
+
h
1
x
[
0
]
,
h
0
x
[
2
]
+
h
1
x
[
1
]
,
h
0
x
[
3
]
+
h
1
x
[
2
]
]
y_{\text{eff}} = [y[2],y[3],y[4],y[5]] = [h_0x[0]+h_1x[3], h_0x[1]+h_1x[0], h_0x[2]+h_1x[1], h_0x[3]+h_1x[2]]
yeff=[y[2],y[3],y[4],y[5]]=[h0x[0]+h1x[3],h0x[1]+h1x[0],h0x[2]+h1x[1],h0x[3]+h1x[2]]
这正好等价于循环卷积:
y
eff
[
n
]
=
(
x
⊛
h
)
[
n
]
=
∑
m
=
0
1
h
[
m
]
x
[
(
n
−
m
)
m
o
d
4
]
y_{\text{eff}}[n] = (x \circledast h)[n] = \sum_{m=0}^{1} h[m]x[(n-m) \mod 4]
yeff[n]=(x⊛h)[n]=m=0∑1h[m]x[(n−m)mod4]
4. 频域正交性验证
对
y
eff
y_{\text{eff}}
yeff进行DFT变换:
Y
[
k
]
=
∑
n
=
0
3
y
eff
[
n
]
e
−
j
2
π
k
n
/
4
Y[k] = \sum_{n=0}^{3} y_{\text{eff}}[n] e^{-j2\pi kn/4}
Y[k]=n=0∑3yeff[n]e−j2πkn/4
代入循环卷积结果:
Y
[
k
]
=
(
∑
m
=
0
1
h
[
m
]
e
−
j
2
π
k
m
/
4
)
⋅
(
∑
n
=
0
3
x
[
n
]
e
−
j
2
π
k
n
/
4
)
=
H
[
k
]
X
[
k
]
Y[k] = \left( \sum_{m=0}^{1} h[m] e^{-j2\pi km/4} \right) \cdot \left( \sum_{n=0}^{3} x[n] e^{-j2\pi kn/4} \right) = H[k]X[k]
Y[k]=(m=0∑1h[m]e−j2πkm/4)⋅(n=0∑3x[n]e−j2πkn/4)=H[k]X[k]
其中
H
[
k
]
H[k]
H[k]是信道的频域响应。频域信号退化为各子载波独立相乘,正交性得以保持。
干扰隔离机制验证
假设下一个符号的CP为
[
x
2
′
,
x
3
′
]
[x_2',x_3']
[x2′,x3′],其多径干扰对当前符号的影响范围:
干扰范围
=
当前符号数据段
⏟
N
=
4
+
CP长度
⏟
L
=
2
−
最大时延
⏟
M
=
1
=
5
采样点
\text{干扰范围} = \underbrace{\text{当前符号数据段}}_{N=4} + \underbrace{\text{CP长度}}_{L=2} - \underbrace{\text{最大时延}}_{M=1} = 5 \text{采样点}
干扰范围=N=4
当前符号数据段+L=2
CP长度−M=1
最大时延=5采样点
而接收端仅保留当前符号的4个有效采样,跨符号干扰被完全截断在CP段内。
结论
通过数学推导可见:
- CP将线性卷积转化为循环卷积,使频域信号满足 Y [ k ] = H [ k ] X [ k ] Y[k]=H[k]X[k] Y[k]=H[k]X[k],正交性不受多径影响
- 当CP长度 L ≥ 最大时延 L \geq \text{最大时延} L≥最大时延时,符号间干扰被物理隔离在CP段内,FFT窗口仅包含当前符号的循环延拓分量。
在正交频分复用(OFDM)系统中,循环前缀(Cyclic Prefix, CP)通过以下机制减小符号间干扰(ISI)并维持子载波的正交性:
1. CP的作用机制
- 保护间隔:CP将OFDM符号末尾的部分数据复制到符号前端,形成一个保护间隔。
- 多径容忍:只要多径时延不超过CP长度,多径信号的影响会被限制在CP段内,避免干扰有效数据。
- 循环卷积特性:CP将线性信道卷积转化为循环卷积,使得频域信道响应变为简单的乘法操作,从而保持子载波正交性。
2. 具体示例
假设一个OFDM系统参数如下:
- 子载波数: N = 4 N = 4 N=4(有效数据长度)
- CP长度: G = 2 G = 2 G=2(保护间隔)
- 信道时延:最大多径时延 L = 1 L = 1 L=1(采样点)
步骤1:生成OFDM符号
- 有效数据:符号数据为 [ x 0 , x 1 , x 2 , x 3 ] [x_0, x_1, x_2, x_3] [x0,x1,x2,x3]。
- 添加CP:将末尾的
G
=
2
G=2
G=2 个采样点复制到前端,得到发送信号:
发送序列 = [ x 2 , x 3 , x 0 , x 1 , x 2 , x 3 ] \text{发送序列} = [x_2, x_3, \quad x_0, x_1, x_2, x_3] 发送序列=[x2,x3,x0,x1,x2,x3]
步骤2:多径信道影响
假设信道有两径:
- 主径:无延迟,增益为1。
- 反射径:延迟1个采样点,增益为0.5。
接收信号是两径信号的叠加:
接收序列
=
[
x
2
,
x
3
,
x
0
,
x
1
,
x
2
,
x
3
]
⏟
主径
+
0.5
⋅
[
0
,
x
2
,
x
3
,
x
0
,
x
1
,
x
2
]
⏟
反射径
\text{接收序列} = \underbrace{[x_2, x_3, x_0, x_1, x_2, x_3]}_{\text{主径}} + 0.5 \cdot \underbrace{[0, x_2, x_3, x_0, x_1, x_2]}_{\text{反射径}}
接收序列=主径
[x2,x3,x0,x1,x2,x3]+0.5⋅反射径
[0,x2,x3,x0,x1,x2]
实际接收信号为:
[
r
0
,
r
1
,
r
2
,
r
3
,
r
4
,
r
5
]
=
[
x
2
,
x
3
+
0.5
x
2
,
x
0
+
0.5
x
3
,
x
1
+
0.5
x
0
,
x
2
+
0.5
x
1
,
x
3
+
0.5
x
2
]
[r_0, r_1, r_2, r_3, r_4, r_5] = [x_2, \ x_3+0.5x_2, \ x_0+0.5x_3, \ x_1+0.5x_0, \ x_2+0.5x_1, \ x_3+0.5x_2]
[r0,r1,r2,r3,r4,r5]=[x2, x3+0.5x2, x0+0.5x3, x1+0.5x0, x2+0.5x1, x3+0.5x2]
步骤3:去除CP
接收端丢弃前
G
=
2
G=2
G=2 个采样点(CP部分),保留有效数据:
[
r
2
,
r
3
,
r
4
,
r
5
]
=
[
x
0
+
0.5
x
3
,
x
1
+
0.5
x
0
,
x
2
+
0.5
x
1
,
x
3
+
0.5
x
2
]
[r_2, r_3, r_4, r_5] = [x_0+0.5x_3, \ x_1+0.5x_0, \ x_2+0.5x_1, \ x_3+0.5x_2]
[r2,r3,r4,r5]=[x0+0.5x3, x1+0.5x0, x2+0.5x1, x3+0.5x2]
步骤4:FFT解调
将有效数据
[
r
2
,
r
3
,
r
4
,
r
5
]
[r_2, r_3, r_4, r_5]
[r2,r3,r4,r5] 输入FFT。由于CP的存在,多径效应被转换为循环卷积,频域响应为:
Y
k
=
X
k
⋅
H
k
(
k
=
0
,
1
,
2
,
3
)
Y_k = X_k \cdot H_k \quad (k=0,1,2,3)
Yk=Xk⋅Hk(k=0,1,2,3)
其中
H
k
H_k
Hk 是信道频率响应。子载波的正交性得以保持,无载波间干扰(ICI)。
3. 关键分析
- ISI消除:反射径的干扰仅出现在CP段( r 0 , r 1 r_0, r_1 r0,r1),被丢弃后不影响有效数据。
- 正交性维持:CP将线性卷积转为循环卷积,FFT后子载波仍正交。
- 条件:CP长度 G ≥ L G \geq L G≥L(多径最大时延)。
4. 若无CP的情况
若未添加CP,反射径的时延会导致:
- ISI:前一个符号的尾部(如 x 3 x_3 x3)干扰当前符号的头部。
- ICI:线性卷积破坏子载波正交性,FFT后子载波间出现干扰。
结论
CP通过吸收多径时延和构造循环卷积,将干扰限制在保护间隔内,同时维持子载波正交性。这是OFDM抗多径衰落的核心机制。
为何线性卷积为何破坏子载波正交性,而循环卷积不会
1. 正交性的本质
OFDM子载波的正交性由以下条件保证:
1
N
∑
n
=
0
N
−
1
e
j
2
π
k
n
/
N
⋅
e
−
j
2
π
m
n
/
N
=
{
1
,
k
=
m
0
,
k
≠
m
\frac{1}{N} \sum_{n=0}^{N-1} e^{j2\pi k n/N} \cdot e^{-j2\pi m n/N} = \begin{cases} 1, & k = m \\ 0, & k \neq m \end{cases}
N1n=0∑N−1ej2πkn/N⋅e−j2πmn/N={1,0,k=mk=m
即在时域上,不同子载波(
k
≠
m
k \neq m
k=m)的采样点乘积之和为零。
2. 线性卷积 vs. 循环卷积
(1) 线性卷积
-
定义:时域信号 x [ n ] x[n] x[n] 通过信道 h [ n ] h[n] h[n] 后,输出为:
y [ n ] = x [ n ] ∗ h [ n ] = ∑ m = − ∞ ∞ x [ m ] ⋅ h [ n − m ] y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] \cdot h[n-m] y[n]=x[n]∗h[n]=m=−∞∑∞x[m]⋅h[n−m]
结果长度 L = N + M − 1 L = N + M - 1 L=N+M−1( N N N为 x x x长度, M M M为 h h h长度)。 -
问题:线性卷积会引入符号间干扰(ISI)和频谱泄露,破坏正交性。
(2) 循环卷积
-
定义:将 x [ n ] x[n] x[n]和 h [ n ] h[n] h[n]周期延拓后卷积,输出为:
y [ n ] = x [ n ] ⊛ h [ n ] = ∑ m = 0 N − 1 x [ m ] ⋅ h [ ( n − m ) m o d N ] y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} x[m] \cdot h[(n-m) \mod N] y[n]=x[n]⊛h[n]=m=0∑N−1x[m]⋅h[(n−m)modN]
结果长度保持为 N N N。 -
关键性质:频域上,循环卷积等效于频域乘法:
FFT ( y [ n ] ) = FFT ( x [ n ] ) ⋅ FFT ( h [ n ] ) \text{FFT}(y[n]) = \text{FFT}(x[n]) \cdot \text{FFT}(h[n]) FFT(y[n])=FFT(x[n])⋅FFT(h[n])
3. 具体示例:线性卷积如何破坏正交性
假设一个简化的OFDM系统:
- 子载波数: N = 4 N = 4 N=4
- 发送符号: X = [ X 0 , X 1 , X 2 , X 3 ] X = [X_0, X_1, X_2, X_3] X=[X0,X1,X2,X3](频域数据)
- 时域信号: x [ n ] = IFFT ( X ) = 1 4 ∑ k = 0 3 X k e j 2 π k n / 4 x[n] = \text{IFFT}(X) = \frac{1}{4}\sum_{k=0}^3 X_k e^{j2\pi kn/4} x[n]=IFFT(X)=41∑k=03Xkej2πkn/4
- 信道响应: h [ n ] = [ h 0 , h 1 ] h[n] = [h_0, h_1] h[n]=[h0,h1](长度 M = 2 M=2 M=2)
步骤1:发送信号通过线性信道
假设发送信号为
x
=
[
x
0
,
x
1
,
x
2
,
x
3
]
x = [x_0, x_1, x_2, x_3]
x=[x0,x1,x2,x3],经过信道
h
=
[
h
0
,
h
1
]
h = [h_0, h_1]
h=[h0,h1]后,接收信号为:
y
[
n
]
=
x
[
n
]
∗
h
[
n
]
=
∑
m
=
0
1
h
[
m
]
⋅
x
[
n
−
m
]
y[n] = x[n] * h[n] = \sum_{m=0}^{1} h[m] \cdot x[n-m]
y[n]=x[n]∗h[n]=m=0∑1h[m]⋅x[n−m]
但需注意,当
n
−
m
<
0
n-m < 0
n−m<0时,
x
[
n
−
m
]
x[n-m]
x[n−m]来自前一个符号(ISI)。
例如:
y
0
=
h
0
x
0
(
无ISI
)
y
1
=
h
0
x
1
+
h
1
x
0
(
无ISI
)
y
2
=
h
0
x
2
+
h
1
x
1
(
无ISI
)
y
3
=
h
0
x
3
+
h
1
x
2
(
无ISI
)
y
4
=
h
1
x
3
(
干扰下一个符号
)
y_0 = h_0 x_0 \quad (\text{无ISI}) \\ y_1 = h_0 x_1 + h_1 x_0 \quad (\text{无ISI}) \\ y_2 = h_0 x_2 + h_1 x_1 \quad (\text{无ISI}) \\ y_3 = h_0 x_3 + h_1 x_2 \quad (\text{无ISI}) \\ y_4 = h_1 x_3 \quad (\text{干扰下一个符号})
y0=h0x0(无ISI)y1=h0x1+h1x0(无ISI)y2=h0x2+h1x1(无ISI)y3=h0x3+h1x2(无ISI)y4=h1x3(干扰下一个符号)
若未添加CP,接收端只能取
y
0
y_0
y0到
y
3
y_3
y3,但
y
4
y_4
y4会影响下一个符号,导致ISI。
步骤2:接收端FFT解调
接收端对
y
0
y_0
y0到
y
3
y_3
y3做FFT,得到:
Y
k
=
∑
n
=
0
3
y
[
n
]
⋅
e
−
j
2
π
k
n
/
4
Y_k = \sum_{n=0}^3 y[n] \cdot e^{-j2\pi kn/4}
Yk=n=0∑3y[n]⋅e−j2πkn/4
由于
y
[
n
]
y[n]
y[n]是线性卷积的结果,其频域响应不再是简单的
X
k
⋅
H
k
X_k \cdot H_k
Xk⋅Hk,而是:
Y
k
=
X
k
⋅
H
k
+
∑
m
≠
k
X
m
⋅
H
k
−
m
⏟
干扰项
Y_k = X_k \cdot H_k + \underbrace{\sum_{m \neq k} X_m \cdot H_{k-m}}_{\text{干扰项}}
Yk=Xk⋅Hk+干扰项
m=k∑Xm⋅Hk−m
这些交叉项(
m
≠
k
m \neq k
m=k)破坏了子载波正交性,导致载波间干扰(ICI)。
4. 循环卷积如何保持正交性
步骤1:添加循环前缀(CP)
假设添加CP长度为
G
=
1
G=1
G=1,发送信号变为:
x
发送
=
[
x
3
,
x
0
,
x
1
,
x
2
,
x
3
]
x_{\text{发送}} = [x_3, x_0, x_1, x_2, x_3]
x发送=[x3,x0,x1,x2,x3]
步骤2:信道响应变为循环卷积
经过信道
h
=
[
h
0
,
h
1
]
h = [h_0, h_1]
h=[h0,h1]后,接收信号为:
y
[
n
]
=
∑
m
=
0
1
h
[
m
]
⋅
x
[
(
n
−
m
)
m
o
d
4
]
y[n] = \sum_{m=0}^{1} h[m] \cdot x[(n-m) \mod 4]
y[n]=m=0∑1h[m]⋅x[(n−m)mod4]
例如:
y
0
=
h
0
x
0
+
h
1
x
3
(
CP将
x
3
引入
)
y
1
=
h
0
x
1
+
h
1
x
0
y
2
=
h
0
x
2
+
h
1
x
1
y
3
=
h
0
x
3
+
h
1
x
2
y_0 = h_0 x_0 + h_1 x_3 \quad (\text{CP将}x_3\text{引入}) \\ y_1 = h_0 x_1 + h_1 x_0 \\ y_2 = h_0 x_2 + h_1 x_1 \\ y_3 = h_0 x_3 + h_1 x_2
y0=h0x0+h1x3(CP将x3引入)y1=h0x1+h1x0y2=h0x2+h1x1y3=h0x3+h1x2
步骤3:去除CP并做FFT
接收端去除CP后,得到有效数据
[
y
0
,
y
1
,
y
2
,
y
3
]
[y_0, y_1, y_2, y_3]
[y0,y1,y2,y3],其FFT为:
Y
k
=
FFT
(
y
[
n
]
)
=
X
k
⋅
H
k
Y_k = \text{FFT}(y[n]) = X_k \cdot H_k
Yk=FFT(y[n])=Xk⋅Hk
其中
H
k
=
FFT
(
h
[
n
]
)
H_k = \text{FFT}(h[n])
Hk=FFT(h[n])。由于循环卷积的频域乘法特性,无交叉干扰项,子载波正交性得以保持。
5. 数学对比
卷积类型 | 频域表达式 | 是否正交 |
---|---|---|
线性卷积 | Y k = X k ⋅ H k + ICI Y_k = X_k \cdot H_k + \text{ICI} Yk=Xk⋅Hk+ICI | 否(有ICI) |
循环卷积 | Y k = X k ⋅ H k Y_k = X_k \cdot H_k Yk=Xk⋅Hk | 是(无ICI) |
6. 核心结论
- 线性卷积破坏正交性:因为它引入了来自其他子载波的交叉项(ICI)。
- 循环卷积保持正交性:CP将信道响应转换为循环卷积,使频域响应退化为简单的乘法,避免交叉干扰。
- CP的关键作用:不仅是保护间隔,更通过构造周期性,将信道影响限制在符号内部。
通过这个例子可以清晰看出,循环前缀通过强制信道表现为循环卷积,使得每个子载波的频域响应独立,从而维持了正交性。这是OFDM在多径环境中高效传输的核心机制。
循环前缀(CP)如何解决ICI和ISI?
在OFDM系统中,循环前缀(CP)的核心作用是消除符号间干扰(ISI)并维持子载波正交性(避免ICI)。具体机制如下:
1. 对抗符号间干扰(ISI)
直接作用
- 保护间隔:CP将OFDM符号末尾的 G G G个采样点复制到符号前端,形成保护间隔。
- 吸收多径时延:只要多径时延不超过CP长度 G G G,反射路径的干扰会被限制在CP段内。接收端丢弃CP后,有效数据部分不受前一个符号的拖尾干扰。
示例分析
假设:
- 发送符号: [ x 0 , x 1 , x 2 , x 3 ] [x_0, x_1, x_2, x_3] [x0,x1,x2,x3]
- CP长度: G = 2 G=2 G=2 → 发送序列为 [ x 2 , x 3 , x 0 , x 1 , x 2 , x 3 ] [x_2, x_3, x_0, x_1, x_2, x_3] [x2,x3,x0,x1,x2,x3]
- 信道最大时延: L = 1 L=1 L=1(采样点)
接收端收到叠加信号后,丢弃前 G = 2 G=2 G=2个采样点(CP部分),仅保留有效数据。多径干扰被限制在CP段内,ISI被完全消除。
2. 消除载波间干扰(ICI)
间接但关键的作用
- 循环卷积特性:CP通过构造符号的周期性,将信道的线性卷积转化为循环卷积。
- 频域乘法简化:循环卷积在频域上等效于子载波频响的乘法,从而保持子载波正交性,避免ICI。
数学验证
- 若无CP,信道响应为线性卷积,FFT解调后频域信号为:
Y k = X k ⋅ H k + ∑ m ≠ k X m ⋅ H k − m ( 存在交叉项,ICI ) Y_k = X_k \cdot H_k + \sum_{m \neq k} X_m \cdot H_{k-m} \quad (\text{存在交叉项,ICI}) Yk=Xk⋅Hk+m=k∑Xm⋅Hk−m(存在交叉项,ICI) - 添加CP后,信道响应变为循环卷积,频域信号为:
Y k = X k ⋅ H k ( 无交叉项,无ICI ) Y_k = X_k \cdot H_k \quad (\text{无交叉项,无ICI}) Yk=Xk⋅Hk(无交叉项,无ICI)
关键条件
只有当CP长度 G ≥ L G \geq L G≥L(最大多径时延)时,循环卷积特性才能严格成立,否则仍会残留ICI。
3. CP对ISI和ICI的联合作用
干扰类型 | 产生原因 | CP的解决方案 | 效果 |
---|---|---|---|
ISI | 多径时延导致符号间重叠 | 添加保护间隔,吸收多径能量 | 丢弃CP段,消除符号间干扰 |
ICI | 线性卷积破坏子载波正交性 | 构造循环卷积,保持频域乘法关系 | 子载波解调无交叉干扰 |
实际场景
- 若CP长度不足(
G
<
L
G < L
G<L):
- ISI未被完全吸收,残留干扰影响有效数据。
- 循环卷积特性被破坏,频域出现ICI。
- 若CP长度足够(
G
≥
L
G \geq L
G≥L):
- ISI被完全限制在CP段内。
- 循环卷积成立,子载波正交性完美保持。
4. 核心结论
- CP同时解决ISI和ICI:
- ISI是直接目标:通过保护间隔吸收多径时延。
- ICI是间接结果:通过循环卷积维持频域正交性。
- 二者关系:
- 消除ISI是避免ICI的前提条件。若ISI未被消除,符号间干扰会进一步破坏子载波正交性。
- 但即使ISI被消除(例如理想同步系统),若无CP构造循环卷积,ICI仍会存在。
附:极端情况对比
情况1:无CP,无ISI(理想信道)
- 信道无时延( L = 0 L=0 L=0),但未添加CP。
- ICI仍存在:线性卷积导致频域干扰,破坏正交性。
情况2:有CP,但信道时延超过CP长度
- CP长度 G = 2 G=2 G=2,信道时延 L = 3 L=3 L=3。
- ISI和ICI均存在:保护间隔不足以吸收多径能量,循环卷积特性被破坏。
总结
循环前缀(CP)通过以下机制同时解决ISI和ICI:
- 物理层保护间隔 → 消除ISI。
- 构造循环卷积 → 消除ICI。
两者缺一不可,共同保障OFDM系统在多径信道下的可靠性。