OFDM系统的循环前缀CP

从数学公式出发,结合具体数值示例逐步解析CP的作用机制:

1. 时域信号模型
设原始OFDM符号长度为 N = 4 N=4 N=4,数据点为 x [ 0 ] , x [ 1 ] , x [ 2 ] , x [ 3 ] x[0],x[1],x[2],x[3] x[0],x[1],x[2],x[3],添加CP长度 L = 2 L=2 L=2后:
x cp = [ x [ 2 ] , x [ 3 ] ⏟ CP , x [ 0 ] , x [ 1 ] , x [ 2 ] , x [ 3 ] ⏟ 数据 ] x_{\text{cp}} = [\underbrace{x[2],x[3]}_{\text{CP}}, \underbrace{x[0],x[1],x[2],x[3]}_{\text{数据}}] xcp=[CP x[2],x[3],数据 x[0],x[1],x[2],x[3]]

2. 多径信道干扰
假设两径信道冲激响应:
h [ n ] = [ h 0 , h 1 ] , 其中时延 τ 1 = 1 个采样周期 h[n] = [h_0, h_1], \quad \text{其中时延} \tau_1 = 1 \text{个采样周期} h[n]=[h0,h1],其中时延τ1=1个采样周期
在时域上,接收信号是输入信号和系统响应的线性卷积:
y [ n ] = x cp ∗ h = ∑ m = 0 1 h [ m ] x cp [ n − m ] = y[n] = x_{\text{cp}} \ast h = \sum_{m=0}^{1} h[m]x_{\text{cp}}[n-m]= y[n]=xcph=m=01h[m]xcp[nm]=
具体展开:
在这里插入图片描述

y [ 0 ] = h 0 x [ 2 ] y [ 1 ] = h 0 x [ 3 ] + h 1 x [ 2 ] y [ 2 ] = h 0 x [ 0 ] + h 1 x [ 3 ] y [ 3 ] = h 0 x [ 1 ] + h 1 x [ 0 ] y [ 4 ] = h 0 x [ 2 ] + h 1 x [ 1 ] y [ 5 ] = h 0 x [ 3 ] + h 1 x [ 2 ] \begin{align*} y[0] &= h_0x[2] \\ y[1] &= h_0x[3] + h_1x[2] \\ y[2] &= h_0x[0] + h_1x[3] \\ y[3] &= h_0x[1] + h_1x[0] \\ y[4] &= h_0x[2] + h_1x[1] \\ y[5] &= h_0x[3] + h_1x[2] \end{align*} y[0]y[1]y[2]y[3]y[4]y[5]=h0x[2]=h0x[3]+h1x[2]=h0x[0]+h1x[3]=h0x[1]+h1x[0]=h0x[2]+h1x[1]=h0x[3]+h1x[2]

3. 去除CP与循环卷积等效
接收端丢弃前 L = 2 L=2 L=2个CP采样,保留有效数据段:
y eff = [ y [ 2 ] , y [ 3 ] , y [ 4 ] , y [ 5 ] ] = [ h 0 x [ 0 ] + h 1 x [ 3 ] , h 0 x [ 1 ] + h 1 x [ 0 ] , h 0 x [ 2 ] + h 1 x [ 1 ] , h 0 x [ 3 ] + h 1 x [ 2 ] ] y_{\text{eff}} = [y[2],y[3],y[4],y[5]] = [h_0x[0]+h_1x[3], h_0x[1]+h_1x[0], h_0x[2]+h_1x[1], h_0x[3]+h_1x[2]] yeff=[y[2],y[3],y[4],y[5]]=[h0x[0]+h1x[3],h0x[1]+h1x[0],h0x[2]+h1x[1],h0x[3]+h1x[2]]
这正好等价于循环卷积:
y eff [ n ] = ( x ⊛ h ) [ n ] = ∑ m = 0 1 h [ m ] x [ ( n − m ) m o d    4 ] y_{\text{eff}}[n] = (x \circledast h)[n] = \sum_{m=0}^{1} h[m]x[(n-m) \mod 4] yeff[n]=(xh)[n]=m=01h[m]x[(nm)mod4]
在这里插入图片描述

4. 频域正交性验证
y eff y_{\text{eff}} yeff进行DFT变换:
Y [ k ] = ∑ n = 0 3 y eff [ n ] e − j 2 π k n / 4 Y[k] = \sum_{n=0}^{3} y_{\text{eff}}[n] e^{-j2\pi kn/4} Y[k]=n=03yeff[n]ej2πkn/4
代入循环卷积结果:
Y [ k ] = ( ∑ m = 0 1 h [ m ] e − j 2 π k m / 4 ) ⋅ ( ∑ n = 0 3 x [ n ] e − j 2 π k n / 4 ) = H [ k ] X [ k ] Y[k] = \left( \sum_{m=0}^{1} h[m] e^{-j2\pi km/4} \right) \cdot \left( \sum_{n=0}^{3} x[n] e^{-j2\pi kn/4} \right) = H[k]X[k] Y[k]=(m=01h[m]ej2πkm/4)(n=03x[n]ej2πkn/4)=H[k]X[k]
其中 H [ k ] H[k] H[k]是信道的频域响应。频域信号退化为各子载波独立相乘,正交性得以保持。

干扰隔离机制验证
假设下一个符号的CP为 [ x 2 ′ , x 3 ′ ] [x_2',x_3'] [x2,x3],其多径干扰对当前符号的影响范围:
干扰范围 = 当前符号数据段 ⏟ N = 4 + CP长度 ⏟ L = 2 − 最大时延 ⏟ M = 1 = 5 采样点 \text{干扰范围} = \underbrace{\text{当前符号数据段}}_{N=4} + \underbrace{\text{CP长度}}_{L=2} - \underbrace{\text{最大时延}}_{M=1} = 5 \text{采样点} 干扰范围=N=4 当前符号数据段+L=2 CP长度M=1 最大时延=5采样点
而接收端仅保留当前符号的4个有效采样,跨符号干扰被完全截断在CP段内。

结论
通过数学推导可见:

  1. CP将线性卷积转化为循环卷积,使频域信号满足 Y [ k ] = H [ k ] X [ k ] Y[k]=H[k]X[k] Y[k]=H[k]X[k],正交性不受多径影响
  2. 当CP长度 L ≥ 最大时延 L \geq \text{最大时延} L最大时延时,符号间干扰被物理隔离在CP段内,FFT窗口仅包含当前符号的循环延拓分量。

在正交频分复用(OFDM)系统中,循环前缀(Cyclic Prefix, CP)通过以下机制减小符号间干扰(ISI)并维持子载波的正交性:


1. CP的作用机制

  • 保护间隔:CP将OFDM符号末尾的部分数据复制到符号前端,形成一个保护间隔。
  • 多径容忍:只要多径时延不超过CP长度,多径信号的影响会被限制在CP段内,避免干扰有效数据。
  • 循环卷积特性:CP将线性信道卷积转化为循环卷积,使得频域信道响应变为简单的乘法操作,从而保持子载波正交性。

2. 具体示例

假设一个OFDM系统参数如下:

  • 子载波数 N = 4 N = 4 N=4(有效数据长度)
  • CP长度 G = 2 G = 2 G=2(保护间隔)
  • 信道时延:最大多径时延 L = 1 L = 1 L=1(采样点)
步骤1:生成OFDM符号
  • 有效数据:符号数据为 [ x 0 , x 1 , x 2 , x 3 ] [x_0, x_1, x_2, x_3] [x0,x1,x2,x3]
  • 添加CP:将末尾的 G = 2 G=2 G=2 个采样点复制到前端,得到发送信号:
    发送序列 = [ x 2 , x 3 , x 0 , x 1 , x 2 , x 3 ] \text{发送序列} = [x_2, x_3, \quad x_0, x_1, x_2, x_3] 发送序列=[x2,x3,x0,x1,x2,x3]
步骤2:多径信道影响

假设信道有两径:

  • 主径:无延迟,增益为1。
  • 反射径:延迟1个采样点,增益为0.5。

接收信号是两径信号的叠加:
接收序列 = [ x 2 , x 3 , x 0 , x 1 , x 2 , x 3 ] ⏟ 主径 + 0.5 ⋅ [ 0 , x 2 , x 3 , x 0 , x 1 , x 2 ] ⏟ 反射径 \text{接收序列} = \underbrace{[x_2, x_3, x_0, x_1, x_2, x_3]}_{\text{主径}} + 0.5 \cdot \underbrace{[0, x_2, x_3, x_0, x_1, x_2]}_{\text{反射径}} 接收序列=主径 [x2,x3,x0,x1,x2,x3]+0.5反射径 [0,x2,x3,x0,x1,x2]
实际接收信号为:
[ r 0 , r 1 , r 2 , r 3 , r 4 , r 5 ] = [ x 2 ,   x 3 + 0.5 x 2 ,   x 0 + 0.5 x 3 ,   x 1 + 0.5 x 0 ,   x 2 + 0.5 x 1 ,   x 3 + 0.5 x 2 ] [r_0, r_1, r_2, r_3, r_4, r_5] = [x_2, \ x_3+0.5x_2, \ x_0+0.5x_3, \ x_1+0.5x_0, \ x_2+0.5x_1, \ x_3+0.5x_2] [r0,r1,r2,r3,r4,r5]=[x2, x3+0.5x2, x0+0.5x3, x1+0.5x0, x2+0.5x1, x3+0.5x2]

步骤3:去除CP

接收端丢弃前 G = 2 G=2 G=2 个采样点(CP部分),保留有效数据:
[ r 2 , r 3 , r 4 , r 5 ] = [ x 0 + 0.5 x 3 ,   x 1 + 0.5 x 0 ,   x 2 + 0.5 x 1 ,   x 3 + 0.5 x 2 ] [r_2, r_3, r_4, r_5] = [x_0+0.5x_3, \ x_1+0.5x_0, \ x_2+0.5x_1, \ x_3+0.5x_2] [r2,r3,r4,r5]=[x0+0.5x3, x1+0.5x0, x2+0.5x1, x3+0.5x2]

步骤4:FFT解调

将有效数据 [ r 2 , r 3 , r 4 , r 5 ] [r_2, r_3, r_4, r_5] [r2,r3,r4,r5] 输入FFT。由于CP的存在,多径效应被转换为循环卷积,频域响应为:
Y k = X k ⋅ H k ( k = 0 , 1 , 2 , 3 ) Y_k = X_k \cdot H_k \quad (k=0,1,2,3) Yk=XkHk(k=0,1,2,3)
其中 H k H_k Hk 是信道频率响应。子载波的正交性得以保持,无载波间干扰(ICI)。


3. 关键分析

  • ISI消除:反射径的干扰仅出现在CP段( r 0 , r 1 r_0, r_1 r0,r1),被丢弃后不影响有效数据。
  • 正交性维持:CP将线性卷积转为循环卷积,FFT后子载波仍正交。
  • 条件:CP长度 G ≥ L G \geq L GL(多径最大时延)。

4. 若无CP的情况

若未添加CP,反射径的时延会导致:

  • ISI:前一个符号的尾部(如 x 3 x_3 x3)干扰当前符号的头部。
  • ICI:线性卷积破坏子载波正交性,FFT后子载波间出现干扰。

结论

CP通过吸收多径时延和构造循环卷积,将干扰限制在保护间隔内,同时维持子载波正交性。这是OFDM抗多径衰落的核心机制。

为何线性卷积为何破坏子载波正交性,而循环卷积不会


1. 正交性的本质

OFDM子载波的正交性由以下条件保证:
1 N ∑ n = 0 N − 1 e j 2 π k n / N ⋅ e − j 2 π m n / N = { 1 , k = m 0 , k ≠ m \frac{1}{N} \sum_{n=0}^{N-1} e^{j2\pi k n/N} \cdot e^{-j2\pi m n/N} = \begin{cases} 1, & k = m \\ 0, & k \neq m \end{cases} N1n=0N1ej2πkn/Nej2πmn/N={1,0,k=mk=m
即在时域上,不同子载波( k ≠ m k \neq m k=m)的采样点乘积之和为零。


2. 线性卷积 vs. 循环卷积

(1) 线性卷积
  • 定义:时域信号 x [ n ] x[n] x[n] 通过信道 h [ n ] h[n] h[n] 后,输出为:
    y [ n ] = x [ n ] ∗ h [ n ] = ∑ m = − ∞ ∞ x [ m ] ⋅ h [ n − m ] y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] \cdot h[n-m] y[n]=x[n]h[n]=m=x[m]h[nm]
    结果长度 L = N + M − 1 L = N + M - 1 L=N+M1 N N N x x x长度, M M M h h h长度)。

  • 问题:线性卷积会引入符号间干扰(ISI)和频谱泄露,破坏正交性。

(2) 循环卷积
  • 定义:将 x [ n ] x[n] x[n] h [ n ] h[n] h[n]周期延拓后卷积,输出为:
    y [ n ] = x [ n ] ⊛ h [ n ] = ∑ m = 0 N − 1 x [ m ] ⋅ h [ ( n − m ) m o d    N ] y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} x[m] \cdot h[(n-m) \mod N] y[n]=x[n]h[n]=m=0N1x[m]h[(nm)modN]
    结果长度保持为 N N N

  • 关键性质:频域上,循环卷积等效于频域乘法:
    FFT ( y [ n ] ) = FFT ( x [ n ] ) ⋅ FFT ( h [ n ] ) \text{FFT}(y[n]) = \text{FFT}(x[n]) \cdot \text{FFT}(h[n]) FFT(y[n])=FFT(x[n])FFT(h[n])


3. 具体示例:线性卷积如何破坏正交性

假设一个简化的OFDM系统:

  • 子载波数 N = 4 N = 4 N=4
  • 发送符号 X = [ X 0 , X 1 , X 2 , X 3 ] X = [X_0, X_1, X_2, X_3] X=[X0,X1,X2,X3](频域数据)
  • 时域信号 x [ n ] = IFFT ( X ) = 1 4 ∑ k = 0 3 X k e j 2 π k n / 4 x[n] = \text{IFFT}(X) = \frac{1}{4}\sum_{k=0}^3 X_k e^{j2\pi kn/4} x[n]=IFFT(X)=41k=03Xkej2πkn/4
  • 信道响应 h [ n ] = [ h 0 , h 1 ] h[n] = [h_0, h_1] h[n]=[h0,h1](长度 M = 2 M=2 M=2
步骤1:发送信号通过线性信道

假设发送信号为 x = [ x 0 , x 1 , x 2 , x 3 ] x = [x_0, x_1, x_2, x_3] x=[x0,x1,x2,x3],经过信道 h = [ h 0 , h 1 ] h = [h_0, h_1] h=[h0,h1]后,接收信号为:
y [ n ] = x [ n ] ∗ h [ n ] = ∑ m = 0 1 h [ m ] ⋅ x [ n − m ] y[n] = x[n] * h[n] = \sum_{m=0}^{1} h[m] \cdot x[n-m] y[n]=x[n]h[n]=m=01h[m]x[nm]
但需注意,当 n − m < 0 n-m < 0 nm<0时, x [ n − m ] x[n-m] x[nm]来自前一个符号(ISI)。

例如:
y 0 = h 0 x 0 ( 无ISI ) y 1 = h 0 x 1 + h 1 x 0 ( 无ISI ) y 2 = h 0 x 2 + h 1 x 1 ( 无ISI ) y 3 = h 0 x 3 + h 1 x 2 ( 无ISI ) y 4 = h 1 x 3 ( 干扰下一个符号 ) y_0 = h_0 x_0 \quad (\text{无ISI}) \\ y_1 = h_0 x_1 + h_1 x_0 \quad (\text{无ISI}) \\ y_2 = h_0 x_2 + h_1 x_1 \quad (\text{无ISI}) \\ y_3 = h_0 x_3 + h_1 x_2 \quad (\text{无ISI}) \\ y_4 = h_1 x_3 \quad (\text{干扰下一个符号}) y0=h0x0(ISI)y1=h0x1+h1x0(ISI)y2=h0x2+h1x1(ISI)y3=h0x3+h1x2(ISI)y4=h1x3(干扰下一个符号)
若未添加CP,接收端只能取 y 0 y_0 y0 y 3 y_3 y3,但 y 4 y_4 y4会影响下一个符号,导致ISI。

步骤2:接收端FFT解调

接收端对 y 0 y_0 y0 y 3 y_3 y3做FFT,得到:
Y k = ∑ n = 0 3 y [ n ] ⋅ e − j 2 π k n / 4 Y_k = \sum_{n=0}^3 y[n] \cdot e^{-j2\pi kn/4} Yk=n=03y[n]ej2πkn/4
由于 y [ n ] y[n] y[n]是线性卷积的结果,其频域响应不再是简单的 X k ⋅ H k X_k \cdot H_k XkHk,而是:
Y k = X k ⋅ H k + ∑ m ≠ k X m ⋅ H k − m ⏟ 干扰项 Y_k = X_k \cdot H_k + \underbrace{\sum_{m \neq k} X_m \cdot H_{k-m}}_{\text{干扰项}} Yk=XkHk+干扰项 m=kXmHkm
这些交叉项( m ≠ k m \neq k m=k)破坏了子载波正交性,导致载波间干扰(ICI)


4. 循环卷积如何保持正交性

步骤1:添加循环前缀(CP)

假设添加CP长度为 G = 1 G=1 G=1,发送信号变为:
x 发送 = [ x 3 , x 0 , x 1 , x 2 , x 3 ] x_{\text{发送}} = [x_3, x_0, x_1, x_2, x_3] x发送=[x3,x0,x1,x2,x3]

步骤2:信道响应变为循环卷积

经过信道 h = [ h 0 , h 1 ] h = [h_0, h_1] h=[h0,h1]后,接收信号为:
y [ n ] = ∑ m = 0 1 h [ m ] ⋅ x [ ( n − m ) m o d    4 ] y[n] = \sum_{m=0}^{1} h[m] \cdot x[(n-m) \mod 4] y[n]=m=01h[m]x[(nm)mod4]
例如:
y 0 = h 0 x 0 + h 1 x 3 ( CP将 x 3 引入 ) y 1 = h 0 x 1 + h 1 x 0 y 2 = h 0 x 2 + h 1 x 1 y 3 = h 0 x 3 + h 1 x 2 y_0 = h_0 x_0 + h_1 x_3 \quad (\text{CP将}x_3\text{引入}) \\ y_1 = h_0 x_1 + h_1 x_0 \\ y_2 = h_0 x_2 + h_1 x_1 \\ y_3 = h_0 x_3 + h_1 x_2 y0=h0x0+h1x3(CPx3引入)y1=h0x1+h1x0y2=h0x2+h1x1y3=h0x3+h1x2

步骤3:去除CP并做FFT

接收端去除CP后,得到有效数据 [ y 0 , y 1 , y 2 , y 3 ] [y_0, y_1, y_2, y_3] [y0,y1,y2,y3],其FFT为:
Y k = FFT ( y [ n ] ) = X k ⋅ H k Y_k = \text{FFT}(y[n]) = X_k \cdot H_k Yk=FFT(y[n])=XkHk
其中 H k = FFT ( h [ n ] ) H_k = \text{FFT}(h[n]) Hk=FFT(h[n])。由于循环卷积的频域乘法特性,无交叉干扰项,子载波正交性得以保持。


5. 数学对比

卷积类型频域表达式是否正交
线性卷积 Y k = X k ⋅ H k + ICI Y_k = X_k \cdot H_k + \text{ICI} Yk=XkHk+ICI否(有ICI)
循环卷积 Y k = X k ⋅ H k Y_k = X_k \cdot H_k Yk=XkHk是(无ICI)

6. 核心结论

  • 线性卷积破坏正交性:因为它引入了来自其他子载波的交叉项(ICI)。
  • 循环卷积保持正交性:CP将信道响应转换为循环卷积,使频域响应退化为简单的乘法,避免交叉干扰。
  • CP的关键作用:不仅是保护间隔,更通过构造周期性,将信道影响限制在符号内部。

通过这个例子可以清晰看出,循环前缀通过强制信道表现为循环卷积,使得每个子载波的频域响应独立,从而维持了正交性。这是OFDM在多径环境中高效传输的核心机制。


循环前缀(CP)如何解决ICI和ISI?

在OFDM系统中,循环前缀(CP)的核心作用是消除符号间干扰(ISI)并维持子载波正交性(避免ICI)。具体机制如下:


1. 对抗符号间干扰(ISI)

直接作用
  • 保护间隔:CP将OFDM符号末尾的 G G G个采样点复制到符号前端,形成保护间隔。
  • 吸收多径时延:只要多径时延不超过CP长度 G G G,反射路径的干扰会被限制在CP段内。接收端丢弃CP后,有效数据部分不受前一个符号的拖尾干扰
示例分析

假设:

  • 发送符号: [ x 0 , x 1 , x 2 , x 3 ] [x_0, x_1, x_2, x_3] [x0,x1,x2,x3]
  • CP长度: G = 2 G=2 G=2 → 发送序列为 [ x 2 , x 3 , x 0 , x 1 , x 2 , x 3 ] [x_2, x_3, x_0, x_1, x_2, x_3] [x2,x3,x0,x1,x2,x3]
  • 信道最大时延: L = 1 L=1 L=1(采样点)

接收端收到叠加信号后,丢弃前 G = 2 G=2 G=2个采样点(CP部分),仅保留有效数据。多径干扰被限制在CP段内,ISI被完全消除


2. 消除载波间干扰(ICI)

间接但关键的作用
  • 循环卷积特性:CP通过构造符号的周期性,将信道的线性卷积转化为循环卷积。
  • 频域乘法简化:循环卷积在频域上等效于子载波频响的乘法,从而保持子载波正交性,避免ICI。
数学验证
  • 若无CP,信道响应为线性卷积,FFT解调后频域信号为:
    Y k = X k ⋅ H k + ∑ m ≠ k X m ⋅ H k − m ( 存在交叉项,ICI ) Y_k = X_k \cdot H_k + \sum_{m \neq k} X_m \cdot H_{k-m} \quad (\text{存在交叉项,ICI}) Yk=XkHk+m=kXmHkm(存在交叉项,ICI)
  • 添加CP后,信道响应变为循环卷积,频域信号为:
    Y k = X k ⋅ H k ( 无交叉项,无ICI ) Y_k = X_k \cdot H_k \quad (\text{无交叉项,无ICI}) Yk=XkHk(无交叉项,无ICI)
关键条件

只有当CP长度 G ≥ L G \geq L GL(最大多径时延)时,循环卷积特性才能严格成立,否则仍会残留ICI。


3. CP对ISI和ICI的联合作用

干扰类型产生原因CP的解决方案效果
ISI多径时延导致符号间重叠添加保护间隔,吸收多径能量丢弃CP段,消除符号间干扰
ICI线性卷积破坏子载波正交性构造循环卷积,保持频域乘法关系子载波解调无交叉干扰
实际场景
  • 若CP长度不足( G < L G < L G<L
    • ISI未被完全吸收,残留干扰影响有效数据。
    • 循环卷积特性被破坏,频域出现ICI。
  • 若CP长度足够( G ≥ L G \geq L GL
    • ISI被完全限制在CP段内。
    • 循环卷积成立,子载波正交性完美保持。

4. 核心结论

  1. CP同时解决ISI和ICI
    • ISI是直接目标:通过保护间隔吸收多径时延。
    • ICI是间接结果:通过循环卷积维持频域正交性。
  2. 二者关系
    • 消除ISI是避免ICI的前提条件。若ISI未被消除,符号间干扰会进一步破坏子载波正交性。
    • 但即使ISI被消除(例如理想同步系统),若无CP构造循环卷积,ICI仍会存在。

附:极端情况对比

情况1:无CP,无ISI(理想信道)
  • 信道无时延( L = 0 L=0 L=0),但未添加CP。
  • ICI仍存在:线性卷积导致频域干扰,破坏正交性。
情况2:有CP,但信道时延超过CP长度
  • CP长度 G = 2 G=2 G=2,信道时延 L = 3 L=3 L=3
  • ISI和ICI均存在:保护间隔不足以吸收多径能量,循环卷积特性被破坏。

总结

循环前缀(CP)通过以下机制同时解决ISI和ICI:

  1. 物理层保护间隔 → 消除ISI。
  2. 构造循环卷积 → 消除ICI。
    两者缺一不可,共同保障OFDM系统在多径信道下的可靠性。
### OFDM循环前缀的作用 在正交频分复用 (OFDM) 系统中,循环前缀 (CP, Cyclic Prefix) 起着至关重要的作用。其主要目的是消除多径效应引起的符号间干扰 (ISI),从而提高系统的可靠性和性能。 #### 解决 ISI 和 ICI 问题 当无线信道存在多路径传播时,接收端可能会接收到多个不同延迟版本的发送信号副本。这些延迟副本可能导致当前符号周期内混入来自前后符号的信息,即符号间干扰 (ISI)[^3]。此外,在频率选择性衰落信道下,子载波间的正交性可能被破坏,导致子载波之间相互干扰,称为载波间干扰 (ICI)[^4]。 #### 工作机制 为了克服上述挑战,循环前缀通过复制每个 OFDM 符号结尾部分的数据并将其作为前置导频插入到该符号之前来工作。这样做使得即使有回声或多径反射到达时间超过了一个符号长度,也不会影响相邻符号的内容,因为这部分额外的时间已经被用来承载重复数据而不是新信息了[^1]。 具体来说: - **防止 ISI**:由于 CP 的加入增加了有效符号持续时间和保护间隔,任何由多径造成的延迟扩展都不会跨越至下一个符号时段内部造成干扰; - **保持子载波正交性**:对于理想情况下无噪声的理想同步条件下,尽管存在多径效应,但由于所有路径都经历了相同的延时处理过程(包括原始传输加上附加的 CP),因此可以认为各条路径上的信号经历了一致性的线性卷积操作而非互相关联的操作形式,这有助于维持各个子载波之间的相对相位关系不变,进而保障了整个系统内的正交特性不受损害[^2]; ```matlab % MATLAB 示例代码展示如何向 OFDM 符号添加循环前缀 function y = add_cyclic_prefix(x,cp_length) % x 是输入的 OFDM 符号序列 % cp_length 表示要添加的循环前缀长度 NFFT=length(x); % FFT 长度等于 OFDM 符号长度 tail=x(end-cp_length+1:end); % 取最后几个样本形成循环前缀 y=[tail,x]; % 将循环前缀拼接到原符号前面 end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值