数学分析学习(一):映射与不等式

前言

最近学习了陈纪修老师编著的《数学分析》的书籍,这里是我学习的随笔。

基础部分

这里主要包括映射,单射,满射,双射,逆映射,函数,重要不等式的学习。

一. 映射

设A和B是两个非空集合( X ⊆ R , Y ⊆ R X \subseteq \mathbb{R}, Y \subseteq \mathbb{R} XR,YR),按照某种对应关系 f f f,对于任意的 x ∈ X x \in X xX,存在唯一确定的 y ∈ Y y \in Y yY于之相对应,则称 f f f X X X Y Y Y的映射,记作 X → f Y X \xrightarrow{f} Y Xf Y
如果这里的 A A A B B B的集合是非空数集,那么 f f f就是集合 A A A到集合 B B B的函数。
D f = X D_f={X} Df=X称为 f f f的定义域, R f ⊆ Y R_f \subseteq Y RfY称为 f f f的值域。其中为 x x x称为在 f f f映射下 y y y的逆像(原像), y y y称为在 f f f映射下 x x x的像。
对于映射而言,像具有唯一性,而逆像(原像)不具有唯一性。

1.1 满射

如果对于映射 f f f R f = Y R_f = Y Rf=Y,则称映射 f f f为满射。
即对于任意的 y ∈ Y y \in Y yY,存在 x ∈ X x \in X xX,使得 y = f ( x ) y=f(x) y=f(x)

1.2 单射

如果对于映射 f f f,逆像也是唯一的,则称映射 f f f为单射。
即对于任意的 x 1 x_1 x1 x 2 x_2 x2,若 x 1 ≠ x 2 x_1 \not= x_2 x1=x2,有 f ( x 1 ) ≠ f ( x 2 ) f(x_1) \not= f(x_2) f(x1)=f(x2)

1.3 双射

如果映射 f f f即是单射也是满射,那么则称 f f f为双射(也叫一一映射)。

1.4 逆映射

f f f X X X Y Y Y的一个映射,并且满足单射。同时构造 g : Y → g X g: Y\xrightarrow{g}X g:Yg X
也是一个映射,则称 g 是 f 的 逆 映 射 g是f的逆映射 gf

二. 常用不等式

2.1 三角不等式

∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b|| \le |a \pm b| \le |a|+|b| aba±ba+b

要证明上面的不等式,可以利用下面的不等式,该不等式显然成立。
− ∣ a ∣ ∣ b ∣ ≤ a b ≤ ∣ a ∣ ∣ b ∣ -|a||b| \le ab \le |a||b| ababab

1.先证明: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b|| \le |a + b| \le |a|+|b| aba+ba+b
证明:由不等式 − ∣ a ∣ ∣ b ∣ ≤ a b ≤ ∣ a ∣ ∣ b ∣ -|a||b| \le ab \le |a||b| ababab,式子同时乘以2,再加上 ∣ a ∣ 2 |a|^2 a2 ∣ b ∣ 2 |b|^2 b2,得到 ∣ a ∣ 2 − 2 ∣ a ∣ ∣ b ∣ + ∣ b ∣ 2 ≤ ∣ a ∣ 2 + 2 a b + ∣ b ∣ 2 ≤ ∣ a ∣ 2 + 2 ∣ a ∣ ∣ b ∣ + ∣ b ∣ 2 |a|^2-2|a||b|+|b|^2 \le |a|^2+2ab+|b|^2 \le |a|^2+2|a||b|+|b|^2 a22ab+b2a2+2ab+b2a2+2ab+b2,继而得到 ( ∣ a ∣ − ∣ b ∣ ) 2 ≤ ( a + b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2 (|a|-|b|)^2 \le (a+b)^2 \le (|a|+|b|)^2 (ab)2(a+b)2(a+b)2,开方后即证。

2.证明: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b|| \le |a - b| \le |a|+|b| ababa+b
证明:还是由不等式 − ∣ a ∣ ∣ b ∣ ≤ a b ≤ ∣ a ∣ ∣ b ∣ -|a||b| \le ab \le |a||b| ababab,式子同时乘以-1得到 − ∣ a ∣ ∣ b ∣ ≤ − a b ≤ ∣ a ∣ ∣ b ∣ -|a||b| \le -ab \le |a||b| ababab后面的证明和上面的大同小异,最后得到 ( ∣ a ∣ − ∣ b ∣ ) 2 ≤ ( a − b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2 (|a|-|b|)^2 \le (a-b)^2 \le (|a|+|b|)^2 (ab)2(ab)2(a+b)2,再开方后即证。

2.2 四个不等式

a 1 2 + a 2 2 + a 3 2 + ⋅ ⋅ ⋅ a n 2 n n ≥ a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n n ≥ a 1 a 2 a 3 ⋅ ⋅ ⋅ a n n ≥ n 1 a 1 + 1 a 2 + 1 a 3 + ⋅ ⋅ ⋅ 1 a n \sqrt[n]{\frac{{a_1}^2+{a_2}^2+{a_3}^2+···{a_n}^2}{n}} \ge \frac{a_1+a_2+a_3+···a_n}{n} \ge \sqrt[n]{a_1a_2a_3···a_n} \ge \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+···\frac{1}{a_n}} nna12+a22+a32+an2 na1+a2+a3+anna1a2a3an a11+a21+a31+an1n

平方平均数 ≥ \ge 算术平均数 ≥ \ge 几何平均数 ≥ \ge 调和平均数

这些不等式对于后续的证明是非常重要。

证明
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n n ≥ a 1 a 2 a 3 ⋅ ⋅ ⋅ a n n \frac{a_1+a_2+a_3+···a_n}{n} \ge \sqrt[n]{a_1a_2a_3···a_n} na1+a2+a3+anna1a2a3an
首先引入不等式 a + b ≥ 2 a b ( 基 本 不 等 式 ) a+b \ge 2\sqrt{ab}(基本不等式) a+b2ab ()
首先证明不等式 a 1 + a 2 + a 3 + a 4 4 ≥ a 1 a 2 a 3 a 4 4 \frac{a_1+a_2+a_3+a_4}{4} \ge \sqrt[4]{a_1a_2a_3a_4} 4a1+a2+a3+a44a1a2a3a4
1 2 ( a 1 + a 2 2 + a 3 + a 4 2 ) ≥ 1 2 ( a 1 a 2 + a 3 a 4 ) ≥ a 1 a 2 a 3 a 4 = a 1 a 2 a 3 a 4 4 \frac{1}{2}(\frac{a_1+a_2}{2} + \frac{a_3+a_4}{2}) \ge \frac{1}{2}(\sqrt{a_1a_2} + \sqrt{a_3a_4}) \ge \sqrt{\sqrt{a_1a_2} \sqrt{a_3a_4}} = \sqrt[4]{a_1a_2a_3a_4} 21(2a1+a2+2a3+a4)21(a1a2 +a3a4 )a1a2 a3a4 =4a1a2a3a4
化简后得到 a 1 + a 2 + a 3 + a 4 4 ≥ a 1 a 2 a 3 a 4 4 \frac{a_1+a_2+a_3+a_4}{4} \ge \sqrt[4]{a_1a_2a_3a_4} 4a1+a2+a3+a44a1a2a3a4
以上证明对于 n = 2 k n=2^k n=2k的情况都适用。(可以考虑数学归纳法证明)

接下来考虑 n ≠ 2 k n \not = 2^k n=2k的情况:
如果 n ≠ 2 k n \not = 2^k n=2k,取 l ∈ N + l \in N^+ lN+,使得 2 l − 1 ≤ n ≤ 2 l 2^{l-1} \le n \le 2^l 2l1n2l。既然不等式不是 2 l 2^l 2l,那么我们加上一些数字,变成 2 l 2^l 2l,首先规定 a 1 a 2 a 3 ⋅ ⋅ ⋅ a n n = a ‾ \sqrt[n]{a_1a_2a_3···a_n} = \overline{a} na1a2a3an =a。同时, a 1 a 2 a 3 ⋅ ⋅ ⋅ a n = a ‾ n a_1a_2a_3···a_n = {\overline{a}}^n a1a2a3an=an n ≠ 2 l n \not = 2^l n=2l的时候,补充 ( 2 l − n ) 个 a ‾ (2^l - n )个\overline{a} (2ln)a
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n + ( 2 l − n ) a ‾ 2 l ≥ a 1 a 2 a 3 ⋅ ⋅ ⋅ a n ( 2 l − n ) a ‾ 2 l = ( a 1 a 2 a 3 ⋅ ⋅ ⋅ a n a ‾ 2 l − n ) 1 2 l \frac{a_1+a_2+a_3+···a_n+(2^l-n)\overline{a}}{2^l} \ge \sqrt[2^l]{a_1a_2a_3···a_n(2^l-n)\overline{a}} = (a_1a_2a_3···a_n\overline{a}^{2^l-n})^\frac{1}{2^l} 2la1+a2+a3+an+(2ln)a2la1a2a3an(2ln)a =(a1a2a3ana2ln)2l1
⇓ \Downarrow
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n + ( 2 l − n ) a ‾ 2 l ≥ ( a 1 a 2 a 3 ⋅ ⋅ ⋅ a n ) 1 2 l a ‾ a ‾ n 2 l = a ‾ n 2 l a ‾ a ‾ n 2 l = a ‾ \frac{a_1+a_2+a_3+···a_n+(2^l-n)\overline{a}}{2^l} \ge (a_1a_2a_3···a_n)^\frac{1}{2^l}\frac{\overline{a}}{\overline{a}^{\frac{n}{2^l}}} = {\overline{a}}^\frac{n}{2^l}{\frac{\overline{a}}{\overline{a}^{\frac{n}{2^l}}}} = \overline{a} 2la1+a2+a3+an+(2ln)a(a1a2a3an)2l1a2lna=a2lna2lna=a
⇓ \Downarrow
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n − n a ‾ 2 l + a ‾ ≥ a ‾ \frac{a_1+a_2+a_3+···a_n-n\overline{a}}{2^l}+\overline{a} \ge \overline{a} 2la1+a2+a3+anna+aa
⇓ \Downarrow
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n 2 l ≥ n a ‾ 2 l \frac{a_1+a_2+a_3+···a_n}{2^l} \ge \frac{n\overline{a}}{2^l} 2la1+a2+a3+an2lna
⇓ \Downarrow
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n ≥ n a ‾ a_1+a_2+a_3+···a_n \ge n\overline{a} a1+a2+a3+anna
⇓ \Downarrow
a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n n ≥ a 1 a 2 a 3 ⋅ ⋅ ⋅ a n n \frac{a_1+a_2+a_3+···a_n}{n} \ge \sqrt[n]{a_1a_2a_3···a_n} na1+a2+a3+anna1a2a3an
证毕。
对于 a 1 a 2 a 3 ⋅ ⋅ ⋅ a n n ≥ n 1 a 1 + 1 a 2 + 1 a 3 + ⋅ ⋅ ⋅ 1 a n \sqrt[n]{a_1a_2a_3···a_n} \ge \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+···\frac{1}{a_n}} na1a2a3an a11+a21+a31+an1n的证明。只需要用不等式 a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ a n n ≥ a 1 a 2 a 3 ⋅ ⋅ ⋅ a n n \frac{a_1+a_2+a_3+···a_n}{n} \ge \sqrt[n]{a_1a_2a_3···a_n} na1+a2+a3+anna1a2a3an 替换为 1 a 1 , 1 a 2 , 1 a 3 , ⋅ ⋅ ⋅ , 1 a n \frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3},···,\frac{1}{a_n} a11,a21,a31,,an1后即可得证明。

总结

以上都是学习数学分析的基础知识,大部分都是高中学习过的。下一篇将涉及数学分析的基石,实数的相关理论。

下一篇:数学分析学习(二)

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rockyou666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值