Discrete Maths Answer

Discrete Maths

Set Theory

映射

  1. 映射的概念:对X中的每一个元素x,Y中有唯一确定的y与之对应。
  2. 单射:任意x,x’∈X,只要x≠x’,则f(x)≠f(x’);
  3. 满射:任意y∈Y,存在x∈X,使得f(x)=y;
  4. 恒等映射:任意x∈X,f(x)=x;
  5. 映射的合成运算满足交换律?结合律?
  6. 逆映射、左可逆、右可逆(口语描述,别写公式)
  7. 集合的特征函数

关系

关系的定义
  1. 二元关系:关系的定义是笛卡尔积的子集,也就是说关系的本质是一个子集。
  2. n元关系: 同上,n个集合笛卡尔积的子集
关系的性质
  1. 自反:定理化、充要条件
  2. 反自反:定理化、充要条件
  3. 对称:定理化、充要条件
  4. 反对称:定理化、充要条件
  5. 传递:定理化、充要条件
  6. 逆:就是对调(x,y)为(y,x)
关系的闭包
  1. 闭包:X上一切包含R的所有某种关系的交成为R的某种“闭包”
  2. 传递闭包:X上一切包含R的传递关系的交
  3. 计算传递闭包(无限、有限)
等价关系
  1. 等价关系def
  2. 等价类:根据等价关系划分的一个个集合就是“等价类”。 与x等价的元素构成的一个集合就是等价类。
  3. 集合的划分
  4. 商集:对等价关系做商集。能做成一个划分。
偏序关系
  1. 偏序关系def(3):自反、反对称、传递
  2. 偏序集: 设≤是X上的一个偏序关系,则称二元组(X,≤)为偏序集。
  3. 全序关系def:
  4. 全续集
    补:
    上界
    上确界:上界中的最小元
    最大/小元

无穷集合及其基数

  1. 对等def:从集合X到Y存在一个一一对应。
可数集
  1. 有限集:既不可看成可数集,也不可看成不可数集,因为这俩都是相对于无穷集合而言的。
  2. 可数集:充要条件:与自然数集建立一个一一对应
一些定理:
无限集A一定含有可数子集
  1. 无穷集合: 凡是能与自身的一个真子集对等的集合成为“无穷集合”(无限集合)不可数集 和 无限集 定义不同!!
  2. 代数数、超越数:整系数代数多项式的根称为“代数数”,非代数数称为“超越数”
连续统集
  1. 区间[0,1]中所有实数构成的集合是不可数集合
  2. 连续统:凡是与[0,1]对等的集就是连续统
EX:全体实数之集、无理数之集、超越数之集是“连续统”
基数及其比较

(这一章比较无穷集合)
26. 集合的基数 : 所有与A对等的集构成的集族称为A的基数

三个人和三匹马都是以3为基数
任一可数集(也称可列集)与自然数集N有相同的基数,即所有可数集是等基数集
  1. 集合A的基数与集合B的基数称为是相等的,当且仅当A与B对等。
  2. α<β:若A与B的一个真子集对等,但A不能和B对等,则称基数α<β
康托-伯恩斯坦定理
  1. 康托-伯恩斯坦定理:若A、B存在双向单射,则对等。
  2. α=β、α>β、α<β :任两个不能同时成立,且恰有一个成立。
  3. 不相交的集合A、B,AUB的基数等于α+β

Graph Theory

Basic

  1. 平凡图、零图
  2. 子图:顶点集、边集都是子集
  3. 生成子图:包含全部顶点
  4. 正则图:有向图可以吗?——正则图是指各顶点的度均相同的无向简单图(Kp∈正则图,但正则图还有比如“圈”)
  5. 定向图:不含对称弧(A->B,B->A)
  6. 图同构:顶点集的大小相同,φ是双射,v1v2∈E <=> φ(v1)φ(v2)∈F
  7. Ulam猜想:同步删除所有顶点,每一步俩图都同构,则原图同构 (嫌抽象看P202)
  8. 通道:点和边的交错序列
  9. 迹:各边互不相同的通道(点可以重复)。(闭迹:闭通道,各边互不相同)————欧拉闭迹
  10. 路:各点不相同的通道。 (回路:闭通道,各点互不相同)————哈密顿回路
  11. 支:极大连通子图(即连通分量)(非连通图有多个支)
  12. 补图:完全图边集商掉原图的边集,顶点不变
  13. 偶图:存在一个二划分{v1,v2},使得任意边的端点,一个在v1中,另一个在v2中。
  14. 完全偶图:全连接
  15. 偶图的充要条件:所有圈都是偶数长
  16. Turan定理:所有具有k个顶点而没有三角形的图中最多有[p2/4]条边

欧拉图

  1. 欧拉迹:包含所有顶点和边的迹
  2. 欧拉闭迹:包含所有顶点和边迹(也称“欧拉回路”)
  3. 欧拉图:存在一条欧拉闭迹的图成为欧拉图
  4. 欧拉图等价条件:所有顶点的度都是偶数 或 “边集能够划分为若干不相交的圈”
  5. 欧拉迹的存在条件:连通且恰有两个奇度顶点
  6. 欧拉迹存在条件的推广情况:连通图若有2n个奇度顶点,则全部边可以排成n条开迹,且至少n条

哈密顿图

  1. 哈密顿圈 :包含所有顶点的圈(也就是“哈密顿回路”)
  2. 哈密顿图 :包含哈密顿圈的图
  3. 必要条件
  4. 哈密顿几个充分条件:1.Dirac:deg(G)>=p/2 2. 推广的Dirac:任意u、v,uv∉E,有deg(u)+deg(v)>=p

邻接矩阵

  1. 顶点i到j长为l的通道条数==邻接矩阵A的l次方的i行j列值
  2. G是连通图 <==> (A+I)的(p-1)次方>0

Tree和割集

  1. 极小连通图:删去任意一条边得到不连通图
  2. 割点v:若G-v的支数 > G的支数,则v为割点。
  3. 桥:同上,换成边
  4. 割点等价定义:1.存在uv 2.二划分
  5. 桥等价定义: 1.不在G的任意圈上 2.存在uv 3.二划分
  6. 割集定义:P255
  7. 割集性质(连通图时?k个支时?)

连通度和匹配

  1. 顶点连通度(有割点?完全图?)
  2. 边连通度
  3. 顶点连通度<边连通度<度
  4. n-顶点连通、n-边连通
  5. 匹配:边集中的任两条边是独立的。
  6. 最大匹配: 对G的任意匹配Y’,恒有|Y’|<|Y|。
  7. 完全匹配:存在G的一个匹配Y,使|Y|=min{|V1|,|V2|}
  8. 完美匹配:2|Y|=|V|

平面图

  1. 平面图:任意两条边除端点外无公共点

  2. 欧拉公式:p-q+f=2 (一堆推论,不看了)

  3. K5,K33都不是平面图(都是反证法) (K5有5x4/2=10条边 P281)

  4. 非哈密顿平面图

  5. ?????

  6. 库拉托斯基定理:可平面的充要条件是没有同胚(边细分)于K5或K33的子图

  7. 瓦格纳定理:可平面的充要条件是没有收缩到K5或K33的子图

  8. 对偶图:在图G的每个面中放置一个G*的顶点,每两个顶点连边当且仅当其所在的面共边界。

  9. 图可双色 充要条件 没有奇数长的圈 (也是偶图的判定条件)

  10. 图都是(degG+1)可着色的

  11. 连通图,若非完全图、非奇度长的图,则degG可着色。

  12. 每个平面图至少是4-可着色的。(4、5、6)

有向图

弱圈,,有向树
57. 定向图 : 不含对称弧
58. 有向通道:有向图顶点和边的交错序列,若v0==vn,则为“闭有向通道”
58. 生成通道(闭通道):含所有顶点的通道
59. 迹:边不重
60. 路:顶点不重
61. 半通道(弱通道):有向图顶点和边的交错序列(与有向通道定义一毛一样)
62. 弱圈:单向圈
63. 弱连通:单向连通
63. 强连通:任意u、v可达 充要条件 当且仅当有向图D有一条闭生成通道(未必是圈)
64. 有向树:def:没有弱圈的弱连通的有向图称为有向树。(即有根树,D中恰有一个顶点入度为0,其余均为1。)
65. 入树:有向图的反向树
66. 比赛图:定向完全图,每个比赛图有生成有向路。

总结

图论中的NPC问题: n可着色问题、判哈密顿图问题

近世代数

群论

  1. 群def
群G的性质:
1. 任意a属于G,a的左逆元也是a的右逆元
2. G的左单位元也是右单位元
3. 群的阶:
  1. 半群:
  2. 幺半群:
  3. 交换群:
  4. 子群:两个充要条件
  5. 生成子群:M是群G的非空子集,G的包含M的所有子群的交称为M生成的子群。
  6. 变换群:所有自身到自身一一映射构成的集合(即"sym(S)")的子群,也就是“对称群”的子群。
  7. 置换群:变换群,当S={1,2,…,n}时。
  8. 对称群:所有自身到自身一一映射构成的集合(即"sym(S)")
  9. 同态: 能够保持乘法的映射
  10. 同构:能够保持乘法的双射
  11. 群同构关于群的关系是一个等价关系
  12. 群的Caylay同构定理:任何一个群都同构于一个变换群。
  13. 自同构:一个从G到G的一一对应,保持乘法。

  1. 循环群:群G由其中的某个元素a生成
整数加法群是一个循环群,其生成元为1.

  1. 子群的陪集:设H为G的一个子群,a为群G的任一元素,则集合{aH}为子群H的一个左陪集。
定理:
1. 设H是G的一个子群,则aH=H的充要条件是a∈H
2. a,b∈G,aH=bH的充要条件是ab-1∈H
3. **左右陪集个数相同**
4. H的所有左陪集构成的集族是G的一个划分。
  1. 拉格朗日N=n*j

  1. 正规子群
    def:设H是G的子群,任意a∈G,都有aH=Ha。
    补:
  2. 换位子群:由"换位子"aba-1b-1生成的子群称为G的换位子群。
  3. 商群:G/H,H为正规子群。

def:

  1. 关于加法是Abel群
  2. 关于乘法是半群(满足结合律)
  3. 乘法对加法满足分配律

交换环def:

  1. 关于乘法满足交换律

零因子
a≠0,b≠0,却有a·b=0

整环

  1. 有单位元
  2. 可交换
  3. 无零因子

除环(体)

def1:

  1. 至少一个非零元

  2. 有单位元

  3. 每个非零元有逆元

    等价定义:

def2:

  1. 至少一个非零元
  2. 全体非零元对乘法构成一个群

Note:一个体包含两部分:加法群,没有零因子的乘法群

环同态、同构
与群的定义一样,
对于加法运算保加法;
对于乘法运算保乘法。

左理想子环(简称“左理想”)
长得像陪集:环N为环R的子环,对于任意r∈R,有rN属于N(左理想)
如果N既是R的左理想,又是右理想,则称N为R的理想。

交换“除环” 称为 “域”
交换“体”,称为“域”

有理数环、实数环R和复数环均是“体”,也是“域”
*******体和域中都没有零因子***************

上确界
上界中的最小值
def:
对L的任两个元素a,b,上确界和下确界均存在。

例子:
任意全序集必是格

完备格
格的任一非空子集均有上确界和下确界。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值