逻辑回归 —— 用于解决分类问题
误差计算
原来计算预测值,线性计算结果如果小于零,预测值为0;如果原来计算预测值为1,预测值就为1。结果只有0和1两种取值,但是这样如果样本错误分类,误差为1,如果样本正确分类,误差为0。这种误差计算方式太为武断,且无法反映误差大小。如下:
h ( x ) = { 0 θ T x < 0 1 θ T x > 0 h(x) = \begin{cases} 0 && \theta^Tx<0\\ 1 && \theta^Tx>0\\ \end{cases} h(x)={
01θTx<0θTx>0
因此将原本分类前的预测值用sigmoid函数散列到零和一之间的数,来