机器学习——逻辑回归,岭回归与LASSO,模型评价指标学习笔记

逻辑回归 —— 用于解决分类问题

误差计算

​ 原来计算预测值,线性计算结果如果小于零,预测值为0;如果原来计算预测值为1,预测值就为1。结果只有0和1两种取值,但是这样如果样本错误分类,误差为1,如果样本正确分类,误差为0。这种误差计算方式太为武断,且无法反映误差大小。如下:
h ( x ) = { 0 θ T x < 0 1 θ T x > 0 h(x) = \begin{cases} 0 && \theta^Tx<0\\ 1 && \theta^Tx>0\\ \end{cases} h(x)={ 01θTx<0θTx>0
​ 因此将原本分类前的预测值用sigmoid函数散列到零和一之间的数,来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值