指数族分布(2):矩母函数、累积量生成函数

指数族分布(2)

指数族分布(1):
[https://blog.csdn.net/RSstudent/article/details/127465224?spm=1001.2014.3001.5501]

典型形式指数族分布在矩、累积量的计算方面存在方便之处,包括期望、方差。

定义:令 T ∈ R s T\in \mathbb{R}^s TRs,Moment generating function(MGF) of T T T定义为
M T ( u ) = E [ e u T ] M_T(u)=E[e^{uT}] MT(u)=E[euT]
累计生成函数CGF:
K T ( u ) = l o g M T ( u ) K_T(u)=logM_T(u) KT(u)=logMT(u)
引理:

如果MGF M X ( u ) M_X(u) MX(u) M Y ( u ) M_Y(u) MY(u)对于随机向量 X X X Y Y Y有限 ,且一致在某个非空集合的内点 u u u,则 P X = P Y P_X=P_Y PX=PY

T 1 , ⋯   , T s T_1, \cdots,T_s T1,,Ts的幂次的期望称为 T T T的矩
α r 1 , r 2 , ⋯   , r s = E [ T 1 r 1 × T 2 r 2 × ⋯ × T s r s ] \alpha_{r_1,r_2, \cdots,r_s}=E[T_1^{r_1}\times T_2^{r_2}\times\cdots\times T_s^{r_s}] αr1,r2,,rs=E[T1r1×T2r2××Tsrs]
通过在 u = 0 u=0 u=0点求取MGF的导数,可以获得这些矩。

定理1

M T M_T MT在远点的某个邻域内有限,且在原点具有个各阶连续导数
α r 1 , r 2 , ⋯   , r s = ∂ r 1 ∂ u 1 r 1 ⋯ ∂ r s ∂ u s r s M T ( u ) ∣ u = 0 \alpha_{r_1,r_2, \cdots,r_s}=\frac{\partial^{r_1}}{\partial u_1^{r_1}}\cdots\frac{\partial^{r_s}}{\partial u_s^{r_s}}M_T(u)|_{u=0} αr1,r2,,rs=u1r1r1usrsrsMT(u)u=0
这是矩,相应的 K T ( u ) K_T(u) KT(u)的导数称为累积量
κ r 1 , r 2 , ⋯   , r s = ∂ r 1 ∂ u 1 r 1 ⋯ ∂ r s ∂ u s r s K T ( u ) ∣ u = 0 \kappa_{r_1,r_2, \cdots,r_s}=\frac{\partial^{r_1}}{\partial u_1^{r_1}}\cdots\frac{\partial^{r_s}}{\partial u_s^{r_s}}K_T(u)|_{u=0} κr1,r2,,rs=u1r1r1usrsrsKT(u)u=0
s = 1 s=1 s=1的时候, K T ′ = ( l o g M T ) ′ = M T ′ M T K_T^{'}=(logM_T)'=\frac{M_T'}{M_T} KT=(logMT)=MTMT,以及 K T ′ ′ = M T ′ ′ M T − M T ′ 2 M T 2 K_T''=\frac{M_T''M_T-M_T'^2}{M_T^2} KT′′=MT2MT′′MTMT′2

可以发现,取导数在 u = 0 u=0 u=0,就
M T ′ = E [ T e u T ] M_T^{'}=E[Te^{uT}] MT=E[TeuT]

M T ′ = E [ e u T ] M_T'=E[e^{uT}] MT=E[euT]

κ 1 = K T ′ ∣ u = 0 = E [ T ] E [ 1 ] = E [ T ] \kappa_1=K_T'|_{u=0}=\frac{E[T]}{E[1]}=E[T] κ1=KTu=0=E[1]E[T]=E[T]

M T ′ ′ = E [ T 2 e u T ] M_T''=E[T^2e^{uT}] MT′′=E[T2euT]

κ 2 = E [ T 2 ] − E [ T ] 2 = V a r ( T ) \kappa_2=E[T^2]-E[T]^2=Var(T) κ2=E[T2]E[T]2=Var(T)

定理2

X X X Y Y Y是独立随机变量。若 X X X Y Y Y均为正的,或者 E ∣ X ∣ E|X| EX E ∣ Y ∣ E|Y| EY有限(Fubini定理条件),则
E [ X Y ] = E [ X ] E [ Y ] E[XY]=E[X]E[Y] E[XY]=E[X]E[Y]
利用上述定理,可以将上面的结论拓展到 n n n个随机向量的和的情况。

T = Y 1 , ⋯   , Y n T=Y_1, \cdots, Y_n T=Y1,,Yn,且 Y i ∈ R s Y_i\in\mathbb{R}^s YiRs的独立变量。由于
M T ( u ) = E [ e u 1 Y 1 × ⋯ × e u n Y n ] M_T(u)=E[e^{u_1Y_1}\times\cdots\times e^{u_nY_n}] MT(u)=E[eu1Y1××eunYn]
利用定理2,
( 12 ) = M Y 1 ( u ) × ⋯ × M Y n ( u ) (12)=M_{Y_1}(u)\times\cdots\times M_{Y_n}(u) (12)=MY1(u)××MYn(u)
考虑累积量生成函数,取对数
K T ( u ) = K Y 1 ( u ) + ⋯ + K Y n ( u ) K_T(u)=K_{Y_1}(u)+\cdots+K_{Y_n}(u) KT(u)=KY1(u)++KYn(u)
因此, T T T的累积量就等于相应的 Y 1 , ⋯   , Y n Y_1,\cdots,Y_n Y1,,Yn的累积量之和。

考察典型形式指数族分布的矩母函数MGF,
E η e u T ( X ) = ∫ x e u T ( x ) e η T ( x ) − A ( η ) h ( x ) d μ ( x ) = e A ( u + η ) − A ( η ) ∫ x e ( u + η ) T ( x ) − A ( u + η ) h ( x ) d μ ( x ) \begin{aligned} E_\eta e^{uT(X)}&=\int_x e^{uT(x)}e^{\eta T(x)-A(\eta)}h(x)d\mu(x)\\ &=e^{A(u+\eta)-A(\eta)}\int_xe^{(u+\eta)T(x)-A(u+\eta)}h(x)d\mu(x)\\ \end{aligned} EηeuT(X)=xeuT(x)eηT(x)A(η)h(x)dμ(x)=eA(u+η)A(η)xe(u+η)T(x)A(u+η)h(x)dμ(x)
发现后面凑成了一个典型形式指数族分布,积分为1.因此,典型形式指数族分布的矩母函数的表达式为
e A ( u + η ) − A ( η ) e^{A(u+\eta)-A(\eta)} eA(u+η)A(η)
对应的累积量生成函数为
A ( u + η ) − A ( η ) A(u+\eta)-A(\eta) A(u+η)A(η)
利用定理1,对 u u u求导并使之等于0:
∂ ( A ( u + η ) − A ( η ) ) ∂ u ∣ u = 0 = ∂ A ( u + η ) ∂ ( u + η ) ∣ u = 0 = ∂ A ( η ) ∂ ( η ) \begin{aligned} \frac{\partial (A(u+\eta)-A(\eta))}{\partial u}|_{u=0} = \frac{\partial A(u+\eta)}{\partial (u+\eta)}|_{u=0}=\frac{\partial A(\eta)}{\partial (\eta)} \end{aligned} u(A(u+η)A(η))u=0=(u+η)A(u+η)u=0=(η)A(η)
依此类推,
κ r 1 , r 2 , ⋯   , r s = ∂ r 1 ∂ η 1 r 1 ⋯ ∂ r s ∂ η s r s K T ( η ) \kappa_{r_1,r_2, \cdots,r_s}=\frac{\partial^{r_1}}{\partial \eta_1^{r_1}}\cdots\frac{\partial^{r_s}}{\partial \eta_s^{r_s}}K_T(\eta) κr1,r2,,rs=η1r1r1ηsrsrsKT(η)

对于指数族分布来说,考虑当 s = 1 s=1 s=1的时候。由累积量生成函数和矩母函数之家牛的关系, M = e K M=e^K M=eK,进而
M ′ = K ′ e K   M ′ ′ = K ′ ′ e K + ( K ′ ) 2 e K M'=K'e^K\ M''=K''e^K+(K')^2e^K M=KeK M′′=K′′eK+(K)2eK
在0处取值,则 E [ T ] = k 1 , E [ T 2 ] = k 2 + k 1 2 E[T]=k_1,E[T^2]=k_2+k_1^2 E[T]=k1,E[T2]=k2+k12

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逆高斯分布是一种连续概率分布,也被称为高斯逆变换或者高斯反函数。它的概率密度函数可以表示为: f(x) = (1/√(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) 其中,μ是均值,σ^2是方差。 逆高斯分布矩母函数推导如下: 首先,我们定义逆高斯分布矩母函数为M(t),即: M(t) = E[e^(tx)] 其中,E[ ]表示期望运算。 我们可以将逆高斯分布的概率密度函数代入到矩母函数中,得到: M(t) = ∫[(-∞)到(+∞)] e^(tx) * f(x) dx 将概率密度函数代入后,可以得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] e^(tx) * exp(-(x-μ)^2 / (2σ^2)) dx 接下来,我们对上式进行化简。 首先,我们可以将指数项e^(tx)和e^(-(x-μ)^2 / (2σ^2))合并,并利用指数函数的性质进行变换,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-(x-μ)^2 / (2σ^2) + tx) dx 接下来,我们将指数项进行展开,并利用高斯函数的性质进行变换,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-(x^2 - 2μx + μ^2 - 2σ^2tx + t^2σ^2x^2) / (2σ^2)) dx 继续化简,可以得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-((1 - t^2σ^2)x^2 - 2(μ + σ^2t)x + μ^2) / (2σ^2)) dx 接下来,我们可以将指数项中的二次项和一次项进行配方,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-((x - (μ + σ^2t)/(1 - t^2σ^2))^2 - ((μ + σ^2t)/(1 - t^2σ^2))^2 + μ^2) / (2σ^2)) dx 继续化简,可以得到: M(t) = (1/√(2πσ^2)) * exp(((μ + σ^2t)/(1 - (μ + σ^2t)/(1 - t^2σ^2))^2) / (2σ^2)) dx 最后,我们可以利用高斯分布的性质,将上式中的积分项化简为1,得到: M(t) = (1/√(2πσ^2)) * exp(((μ + σ^2t)/(1 - t^2σ^2))^2 - μ^2 / (2σ^2)) 这就是逆高斯分布矩母函数推导的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值