矩母函数
1.什么是统计学中的矩
假设我们感兴趣的随机变量是 X X X。那么矩就是 X X X 的期望值,例如, E ( X ) E(X) E(X)、 E ( X 2 ) E(X^2) E(X2)、 E ( X 3 ) E(X^3) E(X3)、……等等。
我们非常熟悉一阶矩和二阶矩,即平均数 μ = E ( X ) μ=E(X) μ=E(X) 和方差 E ( X 2 ) − μ 2 E(X^2)-μ^2 E(X2)−μ2,它们是 X X X 的重要特征。另外,三阶矩表明了分布的不对称性,四阶矩则表明了尾部效应…… 这些矩表明了有关分布的信息。
2.什么是矩母函数(MGF)
矩生成函数 Moment Generating Function,MGF
,又叫矩母函数,顾名思义,就是产生矩的函数。
矩母函数的定义如下。
当你看到
M
G
F
MGF
MGF 的定义,你可能会说 我对
E
(
e
t
x
)
E(e^{tx})
E(etx) 不感兴趣,我只想知道
E
(
X
n
)
E(X^n)
E(Xn)。求
M
G
F
MGF
MGF 的
n
n
n 次导数,然后令
t
=
0
t=0
t=0,你就会得到
E
(
X
n
)
E(X^n)
E(Xn)。
3.为什么 MGF 的 n 次导是 E(Xn)
我们将用泰勒级数证明这一点。
代入 E ( e t x ) E(e^{tx}) E(etx)。
对 t t t 求导。
如果在 ③ 上继续求导,将得到 E ( X 2 ) E(X^2) E(X2)。如果继续求一次导,将得到 E ( X 3 ) E(X^3) E(X3)……等等
当我第一次看到矩生成函数时,我无法理解 t t t 在函数中的作用,因为 t t t 似乎是一些我不感兴趣的任意变量。然而,正如你所见, t t t 是一个辅助变量。我们引入 t t t 是为了能够使用微积分(导数),使(我们不感兴趣的)项为零。
4.为什么需要 MGF
但是我们可以用期望值的定义来计算矩,我们到底为什么需要MGF呢?
当然是为了计算更方便。
在数学课本中,总是让我们求出 二项分布( n , p n,p n,p)、泊松分布( λ λ λ)、指数分布( λ λ λ)、正态分布( 0 , 1 0,1 0,1) 等的矩生成函数。然而,它们从来没有说明为什么 M G F MGF MGF 会有这样的作用。
我们以指数分布的 M G F MGF MGF 为例,带给你惊喜,这是 M G F MGF MGF 作用非常明显的例子。
指数分布的 P D F PDF PDF(概率密度函数)如下。
现在推导指数的MGF。
为了使 MGF 存在,期望值
E
(
e
t
x
)
E(e^{tx})
E(etx) 应该存在。这就是为什么
t
−
λ
<
0
t - λ < 0
t−λ<0 是一个需要满足的重要条件,因为否则积分就不会收敛。一旦你知道了
M
G
F
=
λ
λ
−
t
MGF=\frac{λ}{λ-t}
MGF=λ−tλ,计算就成了求导的问题,这比直接计算期望值的积分更容易。
5.总结
- 对于任何有效的 M G F MGF MGF, M ( 0 ) = 1 M(0)=1 M(0)=1。每当你计算 M G F MGF MGF 时,代入 t = 0 t=0 t=0,看看是否为 1。
- 例如,你可以通过前两个矩,即均值和方差,完全指定正态分布。当你知道分布的多个不同阶导数时,你会对该分布有更多的了解。如果有一个人你没有见过,而你知道他的身高、体重、肤色、最喜欢的爱好等等,你仍然不一定完全了解他,但却得到了越来越多关于他的信息。
- M G F MGF MGF 的魅力在于,一旦你有了 M G F MGF MGF(预期值存在),你就可以得到任何 N N N 阶导。 M G F MGF MGF 将一个随机变量的任意阶导编码为一个单一的函数,以后可以从中再次提取。
- 一个概率分布是由其 M G F MGF MGF 唯一决定的。如果两个随机变量具有相同的 M G F MGF MGF,那么它们一定具有相同的分布。
- 分布的一个重要特征是它的尾部有多重,特别是对于金融业的风险管理。如果你记得 2009 年的金融危机,那基本上是没有解决罕见事件发生的可能性。有时,看似随机的分布,假设风险曲线平滑,其中可能有隐藏的隆起。而我们可以用 M G F MGF MGF 来检测这些。