第四周下 数论

先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出的平面为(n-1)+1;折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条折线时,也就是增加了2n条和2n-1条他们连在了一起,他们各增加了2n,2(n-1)个交点,因为连在了一起,所以此时与图形新的交点为22(n-1)+1 所以推出f(n)=f(n-1)+4(n-1)+1,n>=3

递推
#include<stdio.h>
#include<string.h>
using namespace std;
int f[10002];
int main()
{
    memset(f,0,sizeof(f));
    f[1]=2,f[2]=7;
    for(int i=3;i<10002;i++)
        f[i]=f[i-1]+4*(i-1)+1;
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        printf("%d\n",f[n]);
    }
    return 0;
}

#include <stdio.h>
#include<queue>
#include<algorithm>
using namespace std;
#include <string.h>
int main()
{
     int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        int m=n*(2*n-1)+1;
        printf("%d\n",m);
    }

    return 0;

}
C a/b  扩欧

用于求ax+by = gcd(a,b)的x,y的解
ax1+by1 = gcd(a,b)
bx2+(a%b)y2 = gcd(b,a%b)
两个等式右边相等没问题吧
于是a
x1+b
y1 = bx2+(a%b)y2
然后用一下上面那个取余另一种写法,化简成
a
x1 + b
y1 = a*y2 + b(x2-[a/b]*y2)
对照得到:
x1 = y2
y1 = x2 - 【a/b】*y2
然后递归求解,到底后逐层向上,上一轮y就是这一轮x,y则需要根据上面结论计算一下
递归终点:if(b=0) gcd = a,x=1,y=0

A = 9973x+n
B = 输入的B
y = A/B =(9973
x+n)/B
------>整理一下得到:-9973x + b*y = n
算出y之后乘以n就是A/B了

#include<stdio.h>
#include<string.h>
using namespace std;
typedef long long ll;
void exgcd(ll a,ll b,ll& x,ll& y)
{
    if(!b)
        x=a,y=0;
    else
    {
        exgcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
}
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        long long n,b,a,k,x,y;
        scanf("%lld%lld",&n,&b);
        exgcd(-9973,b,x,y);
        printf("%lld\n",(y*n%9973+9973)%9973);//因为gcd(-9973,b) = 1,所以对于  //-9973*x+b*y=1,所以也可以不乘n
    }
    return 0;
}

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页