数论 - 第四周

主要总结一下这周学的数论题目,数学相结合的问题,的确有非常大的思考量,做起来需要数学知识的积累,并且也要不时回顾大量练题。

质数筛

质数筛的复杂度大概在n*log n,其中通过枚举所有质数的倍数来筛掉非质数,代码比较神奇,具体原理不太明了。

#include<bits/stdc++.h>
using namespace std;

const int N = 1e6 + 10;
int st[N], primes[N];

int main()
{
    int n, cnt = 0;
    cin >> n;
    for(int i = 2; i <= n; i++){
        if(!st[i]) primes[cnt++] = i;
        for(int j= 0; primes[j] <= n / i; j++){
            st[primes[j] * i] = 1;             //把当前的数,和前面找到的质数全部乘一遍
            if(i % primes[j] == 0) break;   //primes[j]是i的最小质因子
        }
    }
    cout << cnt << endl;
    return 0;

}

快速幂和逆元

首先快速幂一般情况下可以用STL里的pow函数代替。
其次,逆元是一个在由mod来减小结果的情况下,运用到的一种优化时间的技巧。它的公式很简单,但原理需要点时间理解。

逆元超好理解篇
逆元,就是数论中的倒数,但又没有倒数那么简单。

引入:
我们知道(a + b) % c 等同于a % c + b % c, 加减成都适用于这个规律只有除法不行,这就导致了有些情况,数字太大而导致数据范围越界,于是就发明了逆元,将除转化为乘,使其同时可以用mod运算。

作用:
它的很大的一个作用,可以快速求出一个值x, 使已给定a, b,使得a * x % m= 1,运用费马定理,其解就是x = a ^ (m - 2)。(存在乘法逆元的条件,a, b互质),所以b的乘法逆元就是x。

快速幂求乘法逆元:

#include<bits/stdc++.h>
using namespace std;

typedef long long LL;

int quick_pow(int a, int b, int p)
{
    LL res = 1;
    while(b){
        if(b & 1) res = (LL)(res * a) % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int main()
{
    int n;
    cin >> n;
    while(n -- ){
        int a, b;
        cin >> a >> b;
        if(a % b == 0) cout << "impossible" << endl;
        else cout << quick_pow(a, b - 2, b) << endl;
    }

    return 0;
}

欧拉函数

欧拉函数解决的问题大约就是,一个数n,1~n中互质的有几个。
公式如下:
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

int main()
{
    int n, x;
    cin >> n;
    while(n--){
        cin >> x;
        int res = x;
        for(int i = 2; i <= x / i; i++){
            if(x % i == 0){
                res = res / i * (i - 1);   //res = res * (i - 1) / i 不能ac好无语
                while(x % i == 0)  x /= i;
            }
        }
        if(x > 1) res = res / x * (x - 1);  //一个大的质因子,这个值大于根号x,所以只会有一个
        cout << res << endl;
    }
    return 0;
}

扩展欧几里得

欧几里得函数求的是两个数的最大公约数,扩展欧几里得求的是x, y, 使得a * x + b * y = gcd( a, b )

y总大法用了递归函数,非常简洁

其主要也是推导出一个公式ax + by = gcd(a,y),但是我们只能可以通过最终的,b = 0的时候x = 1, y = 0,然后去倒推出我们要的x, y,这时候可以要利一个通过推导过的公式:

y1 = x(x1是a mod后的系数)
x1 = y - a / b * x

就是下一次,递归也就是a, b mod后的前面的系数,推导到b为0时,x = 1, y = 0了

//https://zhuanlan.zhihu.com/p/58241990    知乎解释
#include<bits/stdc++.h>
using namespace std;

void exgcd(int a, int b, int &x, int &y)
{
    if(b == 0) x = 1, y = 0;
    else exgcd(b, a % b, y, x), y = y - a / b * x;
}

int main()
{
    int n, a, b;
    cin >> n;
    while(n -- ){
        cin >> a >> b;
        int x, y;
        exgcd(a, b, x, y);
        cout << x << " " << y << endl;
    }
    return 0 ;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值