—— by A Code Rabbit
Description
一张有20个顶点的图上。
依次输入每个点与哪些点直接相连。
并且多次询问两点间,最短需要经过几条路才能从一点到达另一点。
Type
Graph Algorithms
Analysis
询问数较多,是经典的 Floyd求任意两点间的最短路径长度。
利用Floyd解题,初始化领接矩阵的时候要注意,可以将没有直接相连的两点之间定义为一个较大的值。
但是要注意,Floyd需要将两数相加,因此这个值不能大于int上限的一半。
Solution
// UVaOJ 567
// Risk
// by A Code Rabbit
#include <cstdio>
#include <cstring>
const int N = 20;
const int MAXV = 22;
const int INF = 1e9;
template <typename T>
struct Graph {
T mat[MAXV][MAXV];
void Init(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
mat[i][j] = i == j ? 0 : INF;
}
}
}
void AddEdge(int u, int v, T w) {
mat[u][v] = w;
}
};
namespace Floyd {
template <typename T>
void Go(T w[MAXV][MAXV], int n) {
for (int k = 0; k < n; k++)
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (w[i][k] + w[k][j] < w[i][j])
w[i][j] = w[i][k] + w[k][j];
}
}
int n;
int a, b;
Graph<int> graph;
void Read(int x, int num);
int main() {
int tot_case = 0;
while (scanf("%d", &n) != EOF) {
// Input.
graph.Init(N);
Read(0, n);
for (int i = 1; i < N - 1; i++) {
scanf("%d", &n);
Read(i, n);
}
// Solve.
Floyd::Go(graph.mat, N);
// Output.
printf("Test Set #%d\n", ++tot_case);
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d%d", &a, &b);
printf("%2d to %2d: %d\n", a, b, graph.mat[a - 1][b - 1]);
}
printf("\n");
}
return 0;
}
void Read(int x, int num) {
for (int i = 0; i < num; i++) {
int y;
scanf("%d", &y);
graph.AddEdge(x, y - 1, 1);
graph.AddEdge(y - 1, x, 1);
}
}