UVaOJ 567 - Risk


—— by A Code Rabbit


Description

一张有20个顶点的图上。

依次输入每个点与哪些点直接相连。

并且多次询问两点间,最短需要经过几条路才能从一点到达另一点。


Type

Graph Algorithms


Analysis

询问数较多,是经典的 Floyd求任意两点间的最短路径长度

利用Floyd解题,初始化领接矩阵的时候要注意,可以将没有直接相连的两点之间定义为一个较大的值。

但是要注意,Floyd需要将两数相加,因此这个值不能大于int上限的一半。


Solution

// UVaOJ 567
// Risk
// by A Code Rabbit

#include <cstdio>
#include <cstring>

const int N = 20;
const int MAXV = 22;
const int INF = 1e9;

template <typename T>
struct Graph {
    T mat[MAXV][MAXV];
    void Init(int n) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                mat[i][j] = i == j ? 0 : INF;
            }
        }
    }
    void AddEdge(int u, int v, T w) {
        mat[u][v] = w;
    }
};

namespace Floyd {
    template <typename T>
    void Go(T w[MAXV][MAXV], int n) {
        for (int k = 0; k < n; k++)
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    if (w[i][k] + w[k][j] < w[i][j])
                        w[i][j] = w[i][k] + w[k][j];
    }
}

int n;
int a, b;
Graph<int> graph;

void Read(int x, int num);

int main() {
    int tot_case = 0;
    while (scanf("%d", &n) != EOF) {
        // Input.
        graph.Init(N);
        Read(0, n);
        for (int i = 1; i < N - 1; i++) {
            scanf("%d", &n);
            Read(i, n);
        }
        // Solve.
        Floyd::Go(graph.mat, N);
        // Output.
        printf("Test Set #%d\n", ++tot_case);
        scanf("%d", &n);
        for (int i = 0; i < n; i++) {
            scanf("%d%d", &a, &b);
            printf("%2d to %2d: %d\n", a, b, graph.mat[a - 1][b - 1]);
        }
        printf("\n");
    }
    return 0;
}

void Read(int x, int num) {
    for (int i = 0; i < num; i++) {
        int y;
        scanf("%d", &y);
        graph.AddEdge(x, y - 1, 1);
        graph.AddEdge(y - 1, x, 1);
    }
}

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
<think>好的,我现在需要处理用户关于sqlmap中--risk=3参数的问题。用户想知道如何设置或理解这个参数的含义。首先,我得回忆一下sqlmap的相关知识,确保自己理解正确。 我记得sqlmap中的--risk选项是用来控制测试的风险等级的。风险等级越高,执行的测试类型越危险,可能对数据库造成更大的负担或潜在破坏。默认的风险等级是1,而最高是3。需要确认各个等级对应的具体测试内容。 接下来,用户可能想知道设置--risk=3的具体影响,比如会启用哪些注入技术,是否有副作用。我需要分点解释风险等级3的含义,可能包括更广泛的测试、使用时间盲注等更复杂的payloads,以及潜在的风险,比如可能触发更多的日志或影响数据库性能。 还要注意引用相关的资料,比如引用中的技术选项部分,可能涉及到用户提到的引用[2]和[3]。需要检查是否有相关的引用来源支持这些解释,比如引用[3]提到线程数设置,但风险等级可能在其他引用中。不过根据用户提供的引用,引用[3]提到了--threads,而引用[2]是关于其他选项,可能需要确认是否有直接相关的引用。 另外,用户可能想知道在什么情况下应该使用--risk=3,比如当默认等级无法检测到注入点时,或者需要更全面的测试时。同时需要提醒用户谨慎使用,因为高等级可能引发数据库的锁或事务问题。 最后,生成相关问题,帮助用户进一步理解相关配置,比如如何平衡风险与效率,或者与其他参数如--level的配合使用。确保问题相关且有帮助。</think>关于sqlmap中`--risk=3`参数的含义与设置方法如下: ### 1. `--risk`参数的作用 `--risk`控制注入测试的侵入性等级(1-3),数值越高测试越激进,可能触发更多潜在漏洞,但也会增加被防御机制拦截或影响数据库稳定性的风险[^3]。 ### 2. 风险等级3的具体行为 当设置为`--risk=3`时: - 启用`时间盲注(Time-based blind)`的复杂变体 - 测试`堆叠查询(Stacked queries)`等高危操作 - 尝试包含`DROP`/`ALTER`等危险语句的payload - 增加对`CASE-WHEN`等复杂表达式的测试 ### 3. 配置方法 在命令行中添加参数: ```bash sqlmap -u "http://target.com/page?id=1" --risk=3 ``` ### 4. 注意事项 - 可能触发数据库日志暴增或锁表现象 - 建议先使用默认等级(risk=1)进行初步测试 - 在已知为测试环境且已授权的情况下使用 - 需配合`--level`参数提升检测深度(如`--level=5`)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值