Flow Matching学习笔记

Flow Matching是用来做什么的?

生成模型

  1. 生成模型本质是从先验分布采样,并通过某种变换得到目标分布。
    • 例如,DDPM是从高斯分布采样,通过去噪得到目标分布。
  2. 生成模型核心是在已知先验分布的情况下,如何建模得到目标分布的过程。
    • 例如,DDPM本质上是在目标数据分布到先验高斯分布的过程中不断加噪,并对噪声预测进行建模

从先验分布到目标分布: Flow Matching

  1. 示意图
    在这里插入图片描述

  2. 数学概念

    1. 数据点 x ∈ R d x\in \mathbb{R}^d xRd, d d d代表数据的维度; x 0 ∼ p 0 x_0\sim p_0 x0p0表示先验分布, x 1 ∼ p 1 x_1\sim p_1 x1p1表示目标分布,
    2. 速度场 u t ( x ) = u ( t , x ) : [ 0 , 1 ] × R d → R d u_t(x)=u(t,x): [0,1]\times \mathbb{R}^d\rightarrow \mathbb{R}^d ut(x)=u(t,x):[0,1]×RdRd,表示从 p 0 p_0 p0 p 1 p_1 p1的变换,可以由以下常微分方程定义
      d x = u t ( x ) d t , dx = u_t(x)dt, dx=ut(x)dt满足 x 0 ∼ p 0 , x 1 ∼ p 1 x_0\sim p_0, x_1\sim p_1 x0p0,x1p1的边界条件, x x x t t t的函数。
    3. Flow Map ψ t ( x ) \psi_t(x) ψt(x)
      • ψ t ( x s ) \psi_t(x_s) ψt(xs)可以理解为 t = 0 t=0 t=0时的一个具体的数据点 x s x_s xs在任意时间点 t t t下的位置,即 x s x_s xs在时间 t = [ 0 , 1 ] t=[0,1] t=[0,1]以内的移动轨迹。
      • x x x为一个分布, ψ t ( x ) \psi_t(x) ψt(x)可以理解为整个分布在时间t下的移动轨迹或者路径
      • 上述常微分方程可以写作
        d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值