逻辑回归

本文介绍了逻辑回归的基本概念,包括模型和学习策略。逻辑回归通过线性回归的结果并应用Sigmoid函数映射到0~1之间,表示类别1的概率。其优势在于可以直接对分类可能性建模,提供预测概率,并且对数损失函数使得模型具有良好的数学性质。然而,逻辑回归是线性模型,不适用于非线性分类,且对样本分布敏感,需要关注样本平衡性。
摘要由CSDN通过智能技术生成

1、逻辑回归概述

简单来说,逻辑回归模型就是讲线性回归模型的结果输入一个sigmoid函数,将回归值映射到0 ~ 1,表示输出为类别 1 的概率。

2、逻辑回归原理

2.1、逻辑回归模型

线性回归表达式如下:
z i = w ⋅ x i + b z_i = \boldsymbol{w}\cdot\boldsymbol{x}_i+\boldsymbol{b} zi=wxi+b
式中 x i \boldsymbol{x}_i xi 是第 i i i 个样本的 N N N 个特征组成的特征向量,即 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( N ) ) \boldsymbol{x}_i=(x^{(1)}_i,x^{(2)}_i,...,x^{(N)}_i) xi=(xi(1),xi(2),...,xi(N)); $ \boldsymbol{w}$ 为 N N N 个特征对应的特征权重组成的向量,即 w = ( w 1 , w 2 , . . . , w N ) \boldsymbol{w}=(w_1,w_2,...,w_N) w=(w1,w2,...,wN) b \boldsymbol{b} b 是第 i i i 个样本对应的偏置常数。
sigmoid函数:
y i = 1 1 + e − z i y_i=\frac{1}{1 + e^{-z_i}} yi=1+ezi1
其中, z i z_i zi 是自变量, y i y_i yi 是因变量, e e e 是自然常数。
在线性回归的结果上套一个sigmoid函数就能得到逻辑回归的结果,即
y i = 1 1 + e − z i = 1 1 + e − ( w ⋅ x i + b ) y_i=\frac{1}{1 + e^{-z_i}}=\frac{1}{1 + e^{-( \boldsymbol{w}\cdot\boldsymbol{x}_i+\boldsymbol{b})}} yi=1+ezi1=1+e(wxi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值