CONTENTS
1、逻辑回归概述
简单来说,逻辑回归模型就是讲线性回归模型的结果输入一个sigmoid
函数,将回归值映射到0 ~ 1,表示输出为类别 1 的概率。
2、逻辑回归原理
2.1、逻辑回归模型
线性回归表达式如下:
z i = w ⋅ x i + b z_i = \boldsymbol{w}\cdot\boldsymbol{x}_i+\boldsymbol{b} zi=w⋅xi+b
式中 x i \boldsymbol{x}_i xi 是第 i i i 个样本的 N N N 个特征组成的特征向量,即 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( N ) ) \boldsymbol{x}_i=(x^{(1)}_i,x^{(2)}_i,...,x^{(N)}_i) xi=(xi(1),xi(2),...,xi(N)); $ \boldsymbol{w}$ 为 N N N 个特征对应的特征权重组成的向量,即 w = ( w 1 , w 2 , . . . , w N ) \boldsymbol{w}=(w_1,w_2,...,w_N) w=(w1,w2,...,wN); b \boldsymbol{b} b 是第 i i i 个样本对应的偏置常数。
sigmoid
函数:
y i = 1 1 + e − z i y_i=\frac{1}{1 + e^{-z_i}} yi=1+e−zi1
其中, z i z_i zi 是自变量, y i y_i yi 是因变量, e e e 是自然常数。
在线性回归的结果上套一个sigmoid
函数就能得到逻辑回归的结果,即
y i = 1 1 + e − z i = 1 1 + e − ( w ⋅ x i + b ) y_i=\frac{1}{1 + e^{-z_i}}=\frac{1}{1 + e^{-( \boldsymbol{w}\cdot\boldsymbol{x}_i+\boldsymbol{b})}} yi=1+e−zi1=1+e−(w⋅xi