统计学习方法之逻辑回归(Logistic Regression)

本文详细探讨了逻辑回归模型,包括其模型假设、最大似然估计策略和梯度下降算法。通过实例展示了如何利用逻辑回归进行0-1分类,并提供了MATLAB代码实现及学习结果的可视化。
摘要由CSDN通过智能技术生成

逻辑回归之所以叫逻辑是因为他用到了逻辑分布:
这里写图片描述
图形如下:
这里写图片描述
还是按照老样子,根据李航老师的统计学习方法三部分进行学习。
1 模型
假设输入为任意范围内的属性值,输出为0-1之间的概率。给定一个阈值,当概率大于该阈值时,Y = 1,否则Y= 0。(在等于阈值部分随意设定,毕竟一点之差不算差)
利用逻辑分布表示之:
这里写图片描述
w*x表示,对不同属性的权值做了一个设定,b表示偏移量。也可以以x0 = 1, w0 = b的方式写到w*x上。
这里写图片描述
在这里注意一点,林轩田老师的视频中Y用的是-1或1,这样可以用到逻辑函数中心对称的性质:

  1-logit(x) = logit(-x)

这个性质在以后最大似然估计和梯度下降时有重大简化作用。当然,本文先使用0,1解决,在用-1,1解决一次。
李航老师书中提到了几率(odds)的概念,但是在后期的解答过程中并没有涉及到相关问题,我就不再记下来了。应该是解释为什么输出Y是一个离散值,但却叫回归的原因。

2 策略
为了得到最合适的w,我们应当采取合适的策略进行学习。逻辑回归模型采用的是最大似然估计的方式。
似然函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值