所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba"。
题目:判断一个字符串是否为回文
解法:递归
递归的作用在于把问题的规模不断缩少,直到问题缩少到能简单地解决
问:如何缩少问题规模?
答:通过观察可以知道,一个回文字符串其中内部也是回文。所以,我们只需要以去掉两端的字符的形式一层层检查,每一次的检查都去掉了两个字符,这样就达到了缩少问题规模的目的。
新问题与原问题有着相同的形式
当去掉两端字符后的字符串,其产生的新问题同样是检查这个字符串是否回文。
递归的结束需要简单情景
1. 字符串长度可能会奇数或偶数:
- 如果字符串长度是奇数,字符串会剩下最中间那位字符,但其不影响回文。当检查到长度为1的时候即代表此字符串是回文
- 如果字符串长度是偶数,当两端的字符串两两比较检查后不会剩下字符。即检查到长度为0的时候即代表此字符串是回文
2. 如果检查到两端两个字符不相同。则说明此字符串不是回文,直接返回0,不需要继续检查
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
using namespace std;
int fun(int l, int r, string str, int len)
{
if (0 == len || 1 == len)
return 1;
if (str[l] != str[r])
return 0;
return fun(l + 1, r - 1, str, len - 2);
}
int main()
{
string ss;
while (getline(cin, ss))
{
cout << fun(0, ss.size() - 1, ss, ss.size()) << endl;;
}
system("pause");
}
问题1 :输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符a、b、c所能排列出来的所有字符串abc、acb、bac、bca、cab和cba。
思路:这是个递归求解的问题。递归算法有四个特性:(1)必须有可达到的终止条件,否则程序将陷入死循环;(2)子问题在规模上比原问题小;(3)子问题可通过再次递归调用求解;(4)子问题的解应能组合成整个问题的解。
对于字符串的排列问题。如果能生成n - 1个元素的全排列,就能生成n个元素的全排列。对于只有1个元素的集合,可以直接生成全排列。全排列的递归终止条件很明确,只有1个元素时。下面这个图很清楚的给出了递归的过程。
参考代码:解法1通过Permutation_Solution1(str, 0, n); 解法2通过调用Permutation_Solution2(str, str)来求解问题。