o LightOJ 1074 Extended Traffic (SPFA判断负环)

题目链接:LightOJ 1074

题意:

有n个路口,每个路口自身有一个值,m条边,每条边的权值是(终点路口值-起点路口值)^3,因此权值可为负。

有q次查询,每次查询输入一个终点路口(起点路口恒为1),问到达终点路口的最短路径是多少,如果最短路径少于3或者不可达,输出“?”,否则输出最短路径。


CODE:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
using namespace std;

const int maxn = 210;
const int maxm = 40010;
const int INF = 0x3f3f3f3f; 

int cases, n, m, p, T, u, v, w, t;
int head[maxn], cnt[maxn], dis[maxn], value[maxn], vis[maxn];
int bad[maxn];
struct Edge {
	int v, w, next;
}edge[maxm];

void AddEdge(int u, int v, int w, int k)
{
	edge[k].v = v;
	edge[k].w = w;
	edge[k].next = head[u];
	head[u] = k;
}

void spfa(int s)
{
	memset(cnt, 0, sizeof(cnt));
	memset(bad, 0, sizeof(bad));
	stack<int> q;
	if (!q.empty()) q.pop();
	for (int i = 1; i <= n; i++)
	{
		if (i == s) dis[i] = 0;
		else dis[i] = INF;
	}
	memset(vis, 0, sizeof(vis));
	vis[s] = 1;
	q.push(s);
	while (!q.empty())
	{
		int uu = q.top();
		q.pop();
		vis[uu] = 0;
		for (int i = head[uu]; i != -1; i = edge[i].next)
		{
			int vv = edge[i].v;
			int ww = edge[i].w;
			if (dis[uu] < INF && dis[vv] > dis[uu] + ww)
			{
				dis[vv] = dis[uu] + ww;
				if (!vis[vv])
				{
					if (++cnt[vv] > n) {
						bad[vv] = 1;//采用这样标记负环的方式,虽然也AC了,但是总是感觉怪怪的。。。
						//2168K 48MS
						continue;
					}
					vis[vv] = 1;
					q.push(vv);
				}
			}
		}
	}
}

int main()
{
#ifdef LOCAL
	freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
#endif
	scanf("%d", &T);
	while (T--) {
		memset(head, -1, sizeof(head));
		scanf("%d", &n);
		for (int i = 1; i <= n; i++)
			scanf("%d", &value[i]);
		scanf("%d", &m);
		for (int i = 1; i <= m; i++) {
			scanf("%d%d", &u, &v);
			int w = (value[v] - value[u])*(value[v] - value[u])*(value[v] - value[u]);
			AddEdge(u, v, w, i);
		}
		spfa(1);
		printf("Case %d:\n", ++cases);
		scanf("%d", &p);
		while (p--) {
			scanf("%d", &t);
			int ans = dis[t];
			if (bad[t] || ans < 3 || ans == INF) printf("?\n");
			else printf("%d\n", ans);
		}
	}
	return 0;
}

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
using namespace std;

const int maxn = 210;
const int maxm = 40010;
const int INF = 0x3f3f3f3f; 

int cases, n, m, p, T, u, v, w, t;
int head[maxn], cnt[maxn], dis[maxn], value[maxn], vis[maxn];
bool cir[maxn];

struct Edge {
	int v, w, next;
}edge[maxm];

void AddEdge(int u, int v, int w, int k)
{
	edge[k].v = v;
	edge[k].w = w;
	edge[k].next = head[u];
	head[u] = k;
}

void dfs(int s)
{
	cir[s] = true;
	for (int i = head[s]; i != -1; i = edge[i].next)
		if(!cir[edge[i].v]) dfs(edge[i].v);//不是cir[i]!
}

void spfa_(int s)
{
	memset(cnt, 0, sizeof(cnt));
	memset(cir, false, sizeof(cir));
	stack<int> q;
	if (!q.empty()) q.pop();
	for (int i = 1; i <= n; i++)
	{
		if (i == s) dis[i] = 0;
		else dis[i] = INF;
	}
	memset(vis, 0, sizeof(vis));
	vis[s] = 1;
	q.push(s);
	while (!q.empty())
	{
		int uu = q.top();
		q.pop();
		vis[uu] = 0;
		for (int i = head[uu]; i != -1; i = edge[i].next)
		{
			int vv = edge[i].v;
			int ww = edge[i].w;
			if (cir[vv]) continue;
			if (dis[uu] < INF && dis[vv] > dis[uu] + ww)
			{
				dis[vv] = dis[uu] + ww;
				if (!vis[vv])
				{
					if (++cnt[vv] > n) {
						dfs(vv);//2164K 32MS
					}
					vis[vv] = 1;
					q.push(vv);
				}
			}
		}
	}
}

int main()
{
#ifdef LOCAL
	freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
#endif
	scanf("%d", &T);
	while (T--) {
		memset(head, -1, sizeof(head));
		scanf("%d", &n);
		for (int i = 1; i <= n; i++)
			scanf("%d", &value[i]);
		scanf("%d", &m);
		for (int i = 1; i <= m; i++) {
			scanf("%d%d", &u, &v);
			int w= (value[v] - value[u])*(value[v] - value[u])*(value[v] - value[u]);
			AddEdge(u, v, w, i);
		}
		spfa_(1);
		printf("Case %d:\n", ++cases);
		scanf("%d", &p);
		while (p--) {
			scanf("%d", &t);
			int ans = dis[t];
			if (cir[t] || ans < 3 || ans == INF) printf("?\n");
			else printf("%d\n", ans);
		}
	}
	return 0;
}


Sigma函数是指一个数字的所有因子之和。给定一个数字n,需要求出有多少个数字的Sigma函数是偶数。\[2\] 为了解决这个问题,可以先筛选出n范围内的素数(范围在10^6即可),然后对n进行素因子分解。对于每个因子,如果它的Sigma函数中连乘的每一项都是偶数,那么整个Sigma函数就是偶数。具体实现中,可以判断每个因子的平方根是否为偶数,如果是偶数,则减去(平方根+1)/2。\[1\] 另外,还可以使用O(1)的做法来解决这个问题。根据观察,所有的完全平方数及其两倍的值都会导致Sigma函数为偶数。因此,可以直接计算n的平方根,然后减去(平方根+1)/2即可得到结果。\[3\] #### 引用[.reference_title] - *1* [Sigma Function](https://blog.csdn.net/PNAN222/article/details/50938232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LightOJ1336】Sigma Function(数论)](https://blog.csdn.net/qq_30974369/article/details/79009498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值