POJ 3169 Layout(SPFA+差分约束)

题目链接:POJ 3169 Layout
/*
题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0。
这些牛的距离存在着一些约束关系:
1.有ml组(u, v, w)的约束关系,表示牛[u]和牛[v]之间的距离必须 <= w。
2.有md组(u, v, w)的约束关系,表示牛[u]和牛[v]之间的距离必须 >= w。
问如果这n头无法排成队伍,则输出-1,如果牛[1]和牛[n]的距离可以无限远,则输出-2,
否则则输出牛[1]和牛[n]之间的最大距离。

分析:
有三个约束关系:
隐含的:dis[i]<=dis[i+1],即dis[i+1]+0>=dis[i];
ML的:  dis[b]-dis[a]<=c,即dis[a]+c>=dis[b](a<b);
MD的:  dis[b]-dis[a]>=c,即dis[b]+(-c)>=dis[a](a<b).
然后依次建边,用spfa求最短路即可。
如果含有负环,那么就无法排成队伍,输出-1;
如果最短路不存在(dis[n]=INF),输出-2;
否则输出dis[n].

*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;

const int maxn = 1010;
const int maxm = 10010;
const int INF = 0x3f3f3f3f;

int cnt[maxm];
int vis[maxn], head[maxn], dis[maxn];
int n, ml, md, tot, a, b, c;

struct Edge {
	int v, w, next;
}edge[maxm];

void AddEdge(int u, int v, int w, int k)
{
	edge[k].v = v;
	edge[k].w = w;
	edge[k].next = head[u];
	head[u] = k;
}

int spfa(int s)
{
	stack<int> q;
	while (!q.empty()) q.pop();
	for (int i = 1; i <= n; i++) dis[i] = INF;
	dis[s] = 0;
	memset(vis, 0, sizeof(vis));
	vis[s] = 1;
	memset(cnt, 0, sizeof(cnt));
	q.push(s);
	while (!q.empty())
	{
		int u = q.top();
		q.pop();
		vis[u] = 0;
		for (int i = head[u]; i != -1; i = edge[i].next)
		{
			int v = edge[i].v;
			int w = edge[i].w;
			if (dis[v] > dis[u] + w)
			{
				dis[v] = dis[u] + w;
				if (!vis[v])
				{
					vis[v] = 1;
					cnt[v]++;
					if (cnt[v] > n) return 0;//负环
					q.push(v);
				}
			}
		}
	}
	return 1;
}

int main()
{
#ifdef LOCAL
	freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
#endif
	while (~scanf("%d%d%d", &n, &ml, &md))
	{
		tot = 0;
		memset(head, -1, sizeof(head));
		for (int i = 1; i <= ml; i++)
		{
			scanf("%d%d%d", &a, &b, &c);
			if (a > b) swap(a, b);
			AddEdge(a, b, c, tot++);
		}
		for (int i = 1; i <= md; i++)
		{
			scanf("%d%d%d", &a, &b, &c);
			if (a > b) swap(a, b);
			AddEdge(b, a, -c, tot++);
		}
		for (int i = 1; i < n; i++)
			AddEdge(i + 1, i, 0, tot++);
		int flag = spfa(1);
		if (flag == 0) printf("-1\n");
		else
		{
			int ans = dis[n];
			if (ans == INF) ans = -2;
			printf("%d\n", ans);
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值