题目链接:POJ 3169 Layout
/*
题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0。
这些牛的距离存在着一些约束关系:
1.有ml组(u, v, w)的约束关系,表示牛[u]和牛[v]之间的距离必须 <= w。
2.有md组(u, v, w)的约束关系,表示牛[u]和牛[v]之间的距离必须 >= w。
问如果这n头无法排成队伍,则输出-1,如果牛[1]和牛[n]的距离可以无限远,则输出-2,
否则则输出牛[1]和牛[n]之间的最大距离。
分析:
有三个约束关系:
隐含的:dis[i]<=dis[i+1],即dis[i+1]+0>=dis[i];
ML的: dis[b]-dis[a]<=c,即dis[a]+c>=dis[b](a<b);
MD的: dis[b]-dis[a]>=c,即dis[b]+(-c)>=dis[a](a<b).
然后依次建边,用spfa求最短路即可。
如果含有负环,那么就无法排成队伍,输出-1;
如果最短路不存在(dis[n]=INF),输出-2;
否则输出dis[n].
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int maxn = 1010;
const int maxm = 10010;
const int INF = 0x3f3f3f3f;
int cnt[maxm];
int vis[maxn], head[maxn], dis[maxn];
int n, ml, md, tot, a, b, c;
struct Edge {
int v, w, next;
}edge[maxm];
void AddEdge(int u, int v, int w, int k)
{
edge[k].v = v;
edge[k].w = w;
edge[k].next = head[u];
head[u] = k;
}
int spfa(int s)
{
stack<int> q;
while (!q.empty()) q.pop();
for (int i = 1; i <= n; i++) dis[i] = INF;
dis[s] = 0;
memset(vis, 0, sizeof(vis));
vis[s] = 1;
memset(cnt, 0, sizeof(cnt));
q.push(s);
while (!q.empty())
{
int u = q.top();
q.pop();
vis[u] = 0;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].v;
int w = edge[i].w;
if (dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if (!vis[v])
{
vis[v] = 1;
cnt[v]++;
if (cnt[v] > n) return 0;//负环
q.push(v);
}
}
}
}
return 1;
}
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif
while (~scanf("%d%d%d", &n, &ml, &md))
{
tot = 0;
memset(head, -1, sizeof(head));
for (int i = 1; i <= ml; i++)
{
scanf("%d%d%d", &a, &b, &c);
if (a > b) swap(a, b);
AddEdge(a, b, c, tot++);
}
for (int i = 1; i <= md; i++)
{
scanf("%d%d%d", &a, &b, &c);
if (a > b) swap(a, b);
AddEdge(b, a, -c, tot++);
}
for (int i = 1; i < n; i++)
AddEdge(i + 1, i, 0, tot++);
int flag = spfa(1);
if (flag == 0) printf("-1\n");
else
{
int ans = dis[n];
if (ans == INF) ans = -2;
printf("%d\n", ans);
}
}
return 0;
}