模版--矩阵快速幂

#include <cstdio>
#include <cstring>
#include <cmath>
#include <climits>
#include <algorithm>
using namespace std;
const long long mod=(long long)(1e9+7);
const int MAX_SIZE=10struct Matrix{
    int row,col;
    long long data[MAX_SIZE][MAX_SIZE];
};

inline Matrix Multiply(Matrix a,Matrix b)//矩阵a和b可相乘的充要条件:a的列数==b的行数
{//矩阵相乘的结果矩阵的行数是a的行数,列数是b的列数
    Matrix ans;
    ans.row=a.row,ans.col=b.col;
    memset(ans.data,0,sizeof(ans.data));
    for(int i=1;i<=ans.row;i++){
        for(int j=1;j<=ans.col;j++){
            for(int k=1;k<=a.col;k++){//a.col==b.row
                ans.data[i][j]+=a.data[i][k]*b.data[k][j];
                ans.data[i][j]%=mod;
            }
        }
    }
    return ans;
}

inline Matrix quick_power(Matrix a,long long n)
{
    Matrix ans,tmp=a;
    ans.row=ans.col=a.row;
    for(int i=1;i<=ans.row;i++) { ans.data[i][i]=1; }
    while(n){
        if(n&1) ans=Multiply(ans,tmp);
        tmp=Multiply(tmp,tmp);
        n>>=1;
    }
    return ans;
}

// 定义:f(n)=f(n-1)-f(n-2),n>=3.
// 输入f1和f2,以及n,输出f(n)%(1e9+7)值。数据long long.

int main()
{
    long long a,b,n;
    while(~scanf("%I64d %I64d",&a,&b)){
        scanf("%I64d",&n);
        if(n==1){
            printf("%I64d\n",(a+mod)%mod);
            continue;
        }else if(n==2){
            printf("%I64d\n",(b+mod)%mod);
            continue;
        }
        Matrix tmp,ans;
        tmp.row=tmp.col=2;
        tmp.data[1][1]=0;
        tmp.data[1][2]=-1;
        tmp.data[2][1]=tmp.data[2][2]=1;
        ans=quick_power(tmp,n-2);
        printf("%I64d\n",((a*ans.data[1][2]+b*ans.data[2][2])%mod+mod)%mod);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值